Skip to main content
Log in

A three-dimensional computational multiscale micromorphic analysis of porous materials in linear elasticity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We present an extension of a multiscale micromorphic theory to three-dimensional problems for porous materials, where a clear scale separation is not given. Following the multiscale micromorphic framework of Biswas and Poh (J Mech Phys Solids 102:187–208, 2017), macroscopic governing equations of a micromorphic continuum are derived from a classical continuum on the microscale by means of a kinematic field decomposition. The macro–microenergy equivalence is guaranteed via the Hill–Mandel condition. For linear elasticity problems, generalized elasticity tensors are determined via several RVE computations once and for all, avoiding concurrent RVE computations for an online structural analysis. A three-dimensional implementation is revealed in detail. A comparative study with direct numerical simulations and first-order multiscale computations shows that the computational multiscale micromorphic method has sufficient accuracy and computational efficiency, thus providing a powerful tool for design and practical engineering applications of porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Biswas, R., Poh, L.H.: A micromorphic computational homogenization framework for heterogeneous materials. J. Mech. Phys. Solids 102, 187–208 (2017)

    Article  MathSciNet  Google Scholar 

  2. Zhang, S.: Research and application progress of foam metal. Powder Metall. Technol. 34(3), 6 (2016)

    Google Scholar 

  3. Wang, Z., Cao, X., Ma, H.: Effect of microstructure on meso-mechanical properties of porous materials. J. Taiyuan Univ. Technol. 37(1), 1–4 (2006)

    Google Scholar 

  4. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  Google Scholar 

  5. Feyel, F., Chaboche, J.L.: Fe2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183(3–4), 309–330 (2000)

    Article  Google Scholar 

  6. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157(1–2), 69–94 (1998)

    Article  MathSciNet  Google Scholar 

  7. Matouš K., Geers, M. G. D., Kouznetsova, V. G., Yvonnet, J.: Homogenization methods and multiscale modeling: nonlinear problems. Encyclopedia of computational mechanics second edition, pp. 1–34 (2017)

  8. Liang, L., Ju, X., Mahnken, R., Xu, Y., Zhou, W.: A nonuniform transformation field analysis for composites with strength difference effects in elastoplasticity. Int. J. Solids Struct. 228, 111103 (2021)

    Article  Google Scholar 

  9. Xu, Y., Ju, X., Mahnken, R., Liang, L.: NTFA-enabled goal-oriented adaptive space-time finite elements for micro-heterogeneous elastoplasticity problems. Comput. Methods Appl. Mech. Eng. 398, 115199 (2022)

    Article  MathSciNet  Google Scholar 

  10. Dvorak, G.J., Benvensite, Y.: On transformation strains and uniform fields in multiphase elastic media. Proc. R. Soc. Lond. 437(A), 291–310 (1992)

  11. Michel, J.C., Suquet, P.: Nonuniform transformation field analysis. Int. J. Solids Struct. 40, 6937–6955 (2003)

    Article  MathSciNet  Google Scholar 

  12. Michel, J.C., Suquet, P.: A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations. J. Mech. Phys. Solids 90, 254–285 (2016)

    Article  MathSciNet  Google Scholar 

  13. Bessa, M.A., Liu, Z., Liu, W.K.: Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput. Methods Appl. Mech. Eng. 306, 319–341 (2016)

    Article  MathSciNet  Google Scholar 

  14. Gibson, L.J.: Cellular solids. MRS Bull. 28(4), 270–274 (2003)

    Article  Google Scholar 

  15. Feng, M., Zhuang, S., Wu, C., Yuan, Z.: Numerical study of micromechanical properties of porous materials based on homogenization method. J. Mater. Sci. Eng. 19(4), 5 (2001)

    Google Scholar 

  16. Fu, C., Liu, P., Li, T.: Tensile strength of metal materials with high porosity. Rare Metal Mater. Eng. 29(002), 94–100 (2000)

    Google Scholar 

  17. Zhao, S., Wang, X., Xu, Y., Wu, P., Liang, L.: Realization of elastic-plastic multiscale analysis and its application in particle reinforced composites. Compos. Mater. Sci. Technol. 34(9), 10 (2017)

    Google Scholar 

  18. Onck, P., Andrews, E.W., Gioux, G., Gibson, L.J.: Size effects in ductile cellular solids. Part II: experimental results. Int. J. Mech. Sci. 43(3), 701–713 (2001)

  19. Geers, M.G. D., Kouznetsova, V.G., A. M, W.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193(48–51), 5525–5550 (2004)

  20. Becker, G., Nguyen, V.D., Noels, L.: Multiscale computational homogenization methods with a gradient enhanced scheme based on the discontinuous galerkin formulation. Comput. Methods Appl. Mech. Eng. 260, 63–77 (2013)

    Article  MathSciNet  Google Scholar 

  21. Nguyen, V.D., Noels, L.: Computational homogenization of cellular materials. Int. J. Solids Struct. 51(11), 2183–2203 (2014)

    Article  Google Scholar 

  22. Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193(48), 5525–5550 (2004). (Advances in Computational Plasticity)

  23. Geers, M.G.D., Kouznetsova, V.V., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54, 1235–1260 (2002)

    Article  Google Scholar 

  24. Eringen, A. C.: . Mechanics of micromorphic materials. In: Applied Mechanics, pp. 131–138. Springer (1966)

  25. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  26. Liu, Q., Li, X., Zhang, J.: A micro-macro homogenization approach for discrete particle assembly: Cosserat continuum modeling of granular materials. Int. J. Solids Struct. 47(2), 291–303 (2010)

    Article  Google Scholar 

  27. Adomeit, G.: Determination of elastic constants of a structured material. In: Kröner, E. (ed.) Mechanics of Generalized Continua, pp. 80–82. Springer, Berlin (1968)

    Chapter  Google Scholar 

  28. Forest, S.: Mechanics of generalized continua: construction by homogenizaton. Le Journal de Physique IV 8(PR4), Pr4-39 (1998)

  29. Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat Moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74(4), 741–753 (2006). (04)

  30. Feyel, F.: A multilevel finite element method (fe2) to describe the response of highly non-linear structures using generalized continua. Comput. Methods Appl. Mech. Eng. 192(28/30), 3233–3244 (2003)

    Article  Google Scholar 

  31. Hütter, G.: On the micro-macro relation for the microdeformation in the homogenization towards micromorphic and micropolar continua. J. Mech. Phys. Solids 127, 62–79 (2019)

    Article  MathSciNet  Google Scholar 

  32. Jänicke, R., Steeb, H.: Wave propagation in periodic microstructures by homogenisation of extended continua. Comput. Mater. Sci. 52(1), 209–211 (2012)

    Article  Google Scholar 

  33. Ju, X., Mahnken, R.: Goal-oriented adaptivity for linear elastic micromorphic continua based on primal and adjoint consistency analysis. Int. J. Numer. Meth. Eng. 112(8), 1017–1039 (2017)

    Article  MathSciNet  Google Scholar 

  34. Liang, L., Ju, X., Mahnken, R., Xu, Y.: Goal-oriented mesh adaptivity for inverse problems in linear micromorphic elasticity. Comput. Struct. 257, 106671 (2021)

    Article  Google Scholar 

  35. Xu, Y., Ju, X., Mahnken, R., Liang, L.: Goal-oriented error estimation and h-adaptive finite elements for hyperelastic micromorphic continua. Comput. Mech. 69, 847–863 (2022)

    Article  MathSciNet  Google Scholar 

  36. Ju, X., Mahnken, R.: Goal-oriented h-type adaptive finite elements for micromorphic elastoplasticity. Comput. Methods Appl. Mech. Eng. 351, 297–329 (2019)

    Article  MathSciNet  Google Scholar 

  37. Hütter, G.: Homogenization of a Cauchy continuum towards a micromorphic continuum. J. Mech. Phys. Solids 99, 394–408 (2017)

    Article  MathSciNet  Google Scholar 

  38. Rokoš, O., Ameen, M.M., Peerlings, R.H.J., Geers, M.G.D.: Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields. J. Mech. Phys. Solids 123, 119–137 (2019)

    Article  MathSciNet  Google Scholar 

  39. Shedbale, A.S., Biswas, R., Poh, L.H.: Nonlinear analyses with a micromorphic computational homogenization framework for composite materials. Comput. Methods Appl. Mech. Eng. 350, 362–395 (2019)

    Article  MathSciNet  Google Scholar 

  40. Poh, L.H., Biswas, R., Shedbale, A.S.: A micromorphic computational homogenization framework for auxetic tetra-chiral structures. J. Mech. Phys. Solids 135, 103801 (2020)

    Article  MathSciNet  Google Scholar 

  41. Ganghoffer, J.-F., Wazne, A., Reda, H.: Frontiers in homogenization methods towards generalized continua for architected materials. Mech. Res. Commun. 130, 104114 (2023)

    Article  Google Scholar 

  42. Biswas, R., Yuan, Z., Poh, L.H.: Accelerated offline setup of homogenized microscopic model for multi-scale analyses using neural network with knowledge transfer. Int. J. Numer. Meth. Eng. 124(13), 3063–3086 (2023)

    Article  MathSciNet  Google Scholar 

  43. Hütter, G.: Interpretation of micromorphic constitutive relations for porous materials at the microscale via harmonic decomposition. J. Mech. Phys. Solids 171, 105135 (2023)

    Article  MathSciNet  Google Scholar 

  44. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)

    Article  MathSciNet  Google Scholar 

  45. Miehe, C.: Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput. Methods Appl. Mech. Eng. 192(5–6), 559–591 (2003)

    Article  MathSciNet  Google Scholar 

  46. Mahnken, R., Ju, X.: Goal-oriented adaptivity based on a model hierarchy of mean-field and full-field homogenization methods in linear elasticity. Int. J. Numer. Meth. Eng. 121, 277–307 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No: LQ21A020002) and the National Natural Science Foundation of China (Grant Nos. 12002309, 52275164).

Author information

Authors and Affiliations

Authors

Contributions

XJ: Writing—original draft, conceptualization, methodology. KG: Writing—original draft, methodology, software. JH: data curation, visualization. HR: software, validation. HC: validation. YX: conceptualization, supervision. LL: conceptualization, supervision.

Corresponding authors

Correspondence to Yangjian Xu or Lihua Liang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Technical details for three-dimensional periodic boundary conditions

In the following, several details are given for the three-dimensional periodic boundary condition in Sect. 3.1. By means of interpolation of corresponding corner displacements in Eq. (25), Eq. (23) becomes

$$\begin{aligned} \hat{u}_{i}^{F}-\hat{u}_{i}^{Ba} =&\frac{1}{4}(1-h)(1-g)(\hat{u}_{i}^{(4)}-\hat{u}_{i}^{(8)})+\frac{1}{4}(1+h)(1-g)(\hat{u}_{i}^{(3)}-\hat{u}_{i}^{(7)}) \nonumber \\&+\frac{1}{4}(1-h)(1+g)(\hat{u}_{i}^{(1)}-\hat{u}_{i}^{(5)})+\frac{1}{4}(1+h)(1+g)(\hat{u}_{i}^{(2)}-\hat{u}_{i}^{(6)}), \end{aligned}$$
(A.1a)
$$\begin{aligned} \hat{u}_{i}^{T}-\hat{u}_{i}^{Bo}=&\frac{1}{4}(1-h)(1-k)(\hat{u}_{i}^{(5)}-\hat{u}_{i}^{(8)})+\frac{1}{4}(1+h)(1-k)(\hat{u}_{i}^{(6)}-\hat{u}_{i}^{(7)}) \nonumber \\&+\frac{1}{4}(1-h)(1+k)(\hat{u}_{i}^{(3)}-\hat{u}_{i}^{(4)})+\frac{1}{4}(1+h)(1+k)(\hat{u}_{i}^{(2)}-\hat{u}_{i}^{(3)}), \end{aligned}$$
(A.1b)
$$\begin{aligned} \hat{u}_{i}^{R}-\hat{u}_{i}^{L}=&\frac{1}{4}(1-g)(1-k)(\hat{u}_{i}^{(7)}-\hat{u}_{i}^{(8)})+\frac{1}{4}(1+g)(1-k)(\hat{u}_{i}^{(6)}-\hat{u}_{i}^{(5)}) \nonumber \\&+\frac{1}{4}(1-g)(1+k)(\hat{u}_{i}^{(3)}-\hat{u}_{i}^{(4)})+\frac{1}{4}(1+g)(1+k)(\hat{u}_{i}^{(2)}-\hat{u}_{i}^{(1)}). \end{aligned}$$
(A.1c)

Here, \(h=\frac{2{\varvec{y}_{1}}}{l}\), \(g=\frac{2{\varvec{y}_{2}}}{l}\) and \(k=\frac{2{\varvec{y}_{3}}}{l}\) represent the normalized coordinates of the analogous node pairs at the front–back, top–bottom and left–right boundary pairs, respectively. Similarly, by means of linear interpolation of corresponding corner displacements, Eq. (24) becomes

$$\begin{aligned}&\hat{u}_{i}^{L12}-\hat{u}_{i}^{L43}=\frac{1}{2}(1-h)(\hat{u}_{i}^{(1)}-\hat{u}_{i}^{(4)})+\frac{1}{2}(1+h)(\hat{u}_{i}^{(2)}-\hat{u}_{i}^{(3)}), \end{aligned}$$
(A.2a)
$$\begin{aligned}&\hat{u}_{i}^{L12}-\hat{u}_{i}^{L56}=\frac{1}{2}(1-h)(\hat{u}_{i}^{(1)}-\hat{u}_{i}^{(5)})+\frac{1}{2}(1+h)(\hat{u}_{i}^{(2)}-\hat{u}_{i}^{(6)}), \end{aligned}$$
(A.2b)
$$\begin{aligned}&\hat{u}_{i}^{L12}-\hat{u}_{i}^{L87}=\frac{1}{2}(1-h)(\hat{u}_{i}^{(1)}-\hat{u}_{i}^{(8)})+\frac{1}{2}(1+h)(\hat{u}_{i}^{(2)}-\hat{u}_{i}^{(7)}), \end{aligned}$$
(A.2c)
$$\begin{aligned}&\hat{u}_{i}^{L23}-\hat{u}_{i}^{L14}=\frac{1}{2}(1-g)(\hat{u}_{i}^{(3)}-\hat{u}_{i}^{(4)})+\frac{1}{2}(1+g)(\hat{u}_{i}^{(2)}-\hat{u}_{i}^{(1)}), \end{aligned}$$
(A.2d)
$$\begin{aligned}&\hat{u}_{i}^{L23}-\hat{u}_{i}^{L58}=\frac{1}{2}(1-g)(\hat{u}_{i}^{(3)}-\hat{u}_{i}^{(8)})+\frac{1}{2}(1+g)(\hat{u}_{i}^{(2)}-\hat{u}_{i}^{(5)}), \end{aligned}$$
(A.2e)
$$\begin{aligned}&\hat{u}_{i}^{L23}-\hat{u}_{i}^{L67}=\frac{1}{2}(1-g)(\hat{u}_{i}^{(3)}-\hat{u}_{i}^{(7)})+\frac{1}{2}(1+g)(\hat{u}_{i}^{(2)}-\hat{u}_{i}^{(6)}), \end{aligned}$$
(A.2f)
$$\begin{aligned}&\hat{u}_{i}^{L26}-\hat{u}_{i}^{L15}=\frac{1}{2}(1-k)(\hat{u}_{i}^{(6)}-\hat{u}_{i}^{(5)})+\frac{1}{2}(1+k)(\hat{u}_{i}^{(2)}-\hat{u}_{i}^{(1)}), \end{aligned}$$
(A.2g)
$$\begin{aligned}&\hat{u}_{i}^{L26}-\hat{u}_{i}^{L48}=\frac{1}{2}(1-k)(\hat{u}_{i}^{(6)}-\hat{u}_{i}^{(8)})+\frac{1}{2}(1+k)(\hat{u}_{i}^{(2)}-\hat{u}_{i}^{(4)}), \end{aligned}$$
(A.2h)
$$\begin{aligned}&\hat{u}_{i}^{L26}-\hat{u}_{i}^{L37}=\frac{1}{2}(1-k)(\hat{u}_{i}^{(6)}-\hat{u}_{i}^{(7)})+\frac{1}{2}(1+k)(\hat{u}_{i}^{(2)}-\hat{u}_{i}^{(3)}). \end{aligned}$$
(A.2i)

which are similar to the formulas in a two-dimensional implementation in [1].

Appendix B: Numerical determination of the elasticity tensors

The elasticity tensors \({{{\varvec{C}}}^{m}}\), \({{{\varvec{E}}}^{n}}\) and \({\varvec{D}}\) are computed similarly to the work [1]. For our three-dimensional implementation, the macroscopic elasticity operator is obtained by condensing the microscopic finite element equations. In the microscale, the finite element equation system reads

$$\begin{aligned} \underline{\underline{{\hat{K}}}}\underline{{\hat{u}}}=\underline{{\hat{r}}}, \end{aligned}$$
(B.1)

where \(\underline{\underline{\hat{K}}}\) is the global stiffness matrix of the RVE and \(\underline{{\hat{r}}}\) represents the residual force. Then, the global stiffness matrix is partitioned as follows

$$\begin{aligned} \left[ \begin{matrix} {{\underline{\underline{{\hat{K}}}}}_{ii}} &{} {{\underline{\underline{{\hat{K}}}}}_{id}} \\ {{\underline{\underline{{\hat{K}}}}}_{di}} &{} {{\underline{\underline{{\hat{K}}}}}_{dd}} \\ \end{matrix} \right] \left[ \begin{matrix} {{\underline{{\hat{u}}}}_{i}} \\ {{\underline{{\hat{u}}}}_{d}} \\ \end{matrix} \right] =\left[ \begin{matrix} {{\underline{{\hat{r}}}}_{i}} \\ {{\underline{{\hat{r}}}}_{d}} \\ \end{matrix} \right] , \end{aligned}$$
(B.2)

where the subscript d denotes the dependent degrees of freedom involved in the periodic boundary conditions (23) and (24). There holds \({{\underline{{\hat{u}}}}_{d}}=\underline{\underline{{\hat{C}}}}{{\underline{{\hat{u}}}}_{i}}\) for the independent degrees of freedom \({{\underline{{\hat{u}}}}_{i}}\), with the correlation matrix \(\underline{\underline{{\hat{C}}}}\). By means of a static condensation [22], Eq. (B.1) reduces to

$$\begin{aligned} \underline{\underline{{{{\hat{K}}}^{*}}}}{{\underline{{\hat{u}}}}_{i}}=\underline{{{{\hat{r}}}^{*}}}, \end{aligned}$$
(B.3)

where

$$\begin{aligned}&\underline{\underline{{{{\hat{K}}}^{*}}}}={{\underline{\underline{{\hat{K}}}}}_{ii}}+{{\underline{\underline{{\hat{K}}}}}_{id}}\underline{\underline{{\hat{C}}}}+{{\underline{\underline{{\hat{C}}}}}^{T}}{{\underline{\underline{{\hat{K}}}}}_{di}}+{{\underline{\underline{{\hat{C}}}}}^{T}}{{\underline{\underline{{\hat{K}}}}}_{dd}}\underline{\underline{{\hat{C}}}}, \end{aligned}$$
(B.4a)
$$\begin{aligned}&{{\underline{{{{\hat{r}}}^{*}}}}_{i}}={{\underline{{\hat{r}}}}_{i}}+{{\underline{\underline{{\hat{C}}}}}^{T}}{{\underline{{\hat{r}}}}_{d}}. \end{aligned}$$
(B.4b)

In order to impose the constraint (30), dummy degrees of freedom with the subscript \(\tilde{\lambda }\) are introduced as

$$\begin{aligned} \underline{\underline{W}}{{\underline{{\hat{u}}}}_{I}}=\underline{{\tilde{H}}}={{\underline{{\hat{u}}}}_{{\tilde{\lambda }}}}, \end{aligned}$$
(B.5)

where \(\underline{\underline{W}}\) and \({{\underline{{\hat{u}}}}_{I}}\) represent the coefficient matrix in Eq. (30) and degrees of freedom along the hole surfaces, respectively. Next, we rewrite Eq. (B.5) as

$$\begin{aligned} {{\underline{{\hat{u}}}}_{{{I}_{d}}}}=\left[ \begin{matrix} -\underline{\underline{{\hat{W}}}}_{2}^{-1}{{\underline{\underline{{\hat{W}}}}}_{1}} &{} \underline{\underline{{\hat{W}}}}_{2}^{-1} \\ \end{matrix} \right] \left[ \begin{matrix} {{\underline{{\hat{u}}}}_{a}} \\ {{\underline{{\hat{u}}}}_{{\tilde{\lambda }}}} \\ \end{matrix} \right] =\left[ \begin{matrix} {{\underline{\underline{{\hat{C}}}}}_{1}} &{} {{\underline{\underline{{\hat{C}}}}}_{2}} \\ \end{matrix} \right] \left[ \begin{matrix} {{\underline{{\hat{u}}}}_{a}} \\ {{\underline{{\hat{u}}}}_{{\tilde{\lambda }}}} \\ \end{matrix} \right] , \end{aligned}$$
(B.6)

where \({{\underline{{\hat{u}}}}_{{{I}_{d}}}}\) and \({{\underline{{\hat{u}}}}_{a}}\) denote the dependent degrees of freedom to be eliminated at the hole surface and the remaining degrees of freedom in Eq. (B.3), respectively. As a result, Eq. (B.3) becomes

$$\begin{aligned} \left[ \begin{matrix} {{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{aa}} &{} \underline{\underline{0}} &{} {{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{a{{I}_{d}}}} \\ \underline{\underline{0}} &{} \underline{\underline{I}} &{} \underline{\underline{0}} \\ {{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{{{I}_{d}}a}} &{} \underline{\underline{0}} &{} {{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{{{I}_{d}}{{I}_{d}}}} \\ \end{matrix} \right] \left[ \begin{matrix} {{\underline{{\hat{u}}}}_{a}} \\ {{\underline{{\hat{u}}}}_{{\tilde{\lambda }}}} \\ {{\underline{{\hat{u}}}}_{{{I}_{d}}}} \\ \end{matrix} \right] =\left[ \begin{matrix} {{\underline{{{{\hat{r}}}^{*}}}}_{a}} \\ {{\underline{{{r}^{*}}}}_{{\tilde{\lambda }}}} \\ {{\underline{{{r}^{*}}}}_{{{I}_{d}}}} \\ \end{matrix} \right] , \end{aligned}$$
(B.7)

where \(\underline{\underline{I}}\) is the identity matrix. On the basis of Eqs. (B.6), (B.7) is further condensed to

$$\begin{aligned} \left[ \begin{matrix} {{\underline{\underline{{{{\hat{K}}}^{**}}}}}_{aa}} &{} {{\underline{\underline{{{{\hat{K}}}^{**}}}}}_{a\tilde{\lambda }}} \\ {{\underline{\underline{{{{\hat{K}}}^{**}}}}}_{\tilde{\lambda }a}} &{} {{\underline{\underline{{{{\hat{K}}}^{**}}}}}_{\tilde{\lambda }\tilde{\lambda }}} \\ \end{matrix} \right] \left[ \begin{matrix} {{\underline{{\hat{u}}}}_{a}} \\ {{\underline{{\hat{u}}}}_{{\tilde{\lambda }}}} \\ \end{matrix} \right] =\left[ \begin{matrix} {{\underline{{{{\hat{r}}}^{**}}}}_{a}} \\ {{\underline{{{r}^{**}}}}_{{\tilde{\lambda }}}} \\ \end{matrix} \right] , \end{aligned}$$
(B.8)

where

$$\begin{aligned}&{{\underline{\underline{{{{\hat{K}}}^{**}}}}}_{aa}}={{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{aa}}+{{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{a{{I}_{d}}}}{{\underline{\underline{{\hat{C}}}}}_{1}}+{{\underline{\underline{{\hat{C}}}}}_{1}}^{T}{{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{{{I}_{d}}a}}+{{\underline{\underline{{\hat{C}}}}}_{1}}^{T}{{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{{{I}_{d}}{{I}_{d}}}}{{\underline{\underline{{\hat{C}}}}}_{1}}, \end{aligned}$$
(B.9a)
$$\begin{aligned}&{{\underline{\underline{{{{\hat{K}}}^{**}}}}}_{a\tilde{\lambda }}}={{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{a{{I}_{d}}}}{{\underline{\underline{{\hat{C}}}}}_{2}}+{{\underline{\underline{{\hat{C}}}}}_{1}}^{T}{{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{{{I}_{d}}{{I}_{d}}}}{{\underline{\underline{{\hat{C}}}}}_{2}}, \end{aligned}$$
(B.9b)
$$\begin{aligned}&{{\underline{\underline{{{{\hat{K}}}^{**}}}}}_{\tilde{\lambda }a}}={{\underline{\underline{{\hat{C}}}}}_{2}}^{T}{{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{{{I}_{d}}a}}+{{\underline{\underline{{\hat{C}}}}}_{2}}^{T}{{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{{{I}_{d}}{{I}_{d}}}}{{\underline{\underline{{\hat{C}}}}}_{1}}, \end{aligned}$$
(B.9c)
$$\begin{aligned}&{{\underline{\underline{{{{\hat{K}}}^{**}}}}}_{\tilde{\lambda }\tilde{\lambda }}}=\underline{\underline{I}}+{{\underline{\underline{{\hat{C}}}}}_{2}}^{T}{{\underline{\underline{{{{\hat{K}}}^{*}}}}}_{{{I}_{d}}{{I}_{d}}}}{{\underline{\underline{{\hat{C}}}}}_{2}}, \end{aligned}$$
(B.9d)
$$\begin{aligned}&{{\underline{{{{\hat{r}}}^{**}}}}_{a}}={{\underline{{{{\hat{r}}}^{*}}}}_{a}}+{{\underline{\underline{{\hat{C}}}}}_{1}}^{T}{{\underline{{{{\hat{r}}}^{*}}}}_{{{I}_{d}}}}, \end{aligned}$$
(B.9e)
$$\begin{aligned}&{{\underline{{{{\hat{r}}}^{**}}}}_{{\tilde{\lambda }}}}={{\underline{{{{\hat{r}}}^{*}}}}_{{\tilde{\lambda }}}}+{{\underline{\underline{{\hat{C}}}}}_{2}}^{T}{{\underline{{{{\hat{r}}}^{*}}}}_{{{I}_{d}}}}. \end{aligned}$$
(B.9f)

The equation system (B.8) is next partitioned as

(B.10)

with the subscripts p and f denoting the corner and the internal free nodes, respectively. By a further condensation [22], Eq. (B.10) finally reduces to

(B.11)

In the numerical implementation, the displacements of the corner nodes of the RVE are prescribed by Eq. (25) as

$$\begin{aligned} \hat{u}_{i}^{(c)}={{H}_{ij}}y_{j}^{(c)}+\frac{1}{4}\{{{\nabla }_{k}}{{\tilde{H}}_{ij}}+{{\nabla }_{k}}{{\tilde{H}}_{ji}}\}y_{j}^{(c)}y_{k}^{(c)}, \qquad c=1,\cdots ,8. \end{aligned}$$
(B.12)

Due to the relation \({{\underline{{\hat{u}}}}_{{\tilde{\lambda }}}}=\underline{{\tilde{H}}}\) in Eq. (B.5), the RVE problem is solved after Eq. (B.11).

Under the periodic boundary conditions (A.1) and (A.2), only corner nodes contribute to Eq. (14). Accordingly, the macroscopic stress tensors are computed by

$$\begin{aligned}&{{\sigma }_{ij}}=\frac{1}{{\hat{V}}}\underset{c=1}{\overset{8}{\mathop {\sum }}}\,f_{i}^{(c)}y_{j}^{(c)}, \end{aligned}$$
(B.13a)
$$\begin{aligned}&{{\xi }_{ij}}=\frac{{{{\hat{V}}}_{I}}}{{\hat{V}}}{{\tilde{\lambda }}_{ij}}, \end{aligned}$$
(B.13b)
$$\begin{aligned}&{{\zeta }_{ijk}}=\frac{1}{4\hat{V}}\underset{c=1}{\overset{8}{\mathop {\sum }}}\,(f_{i}^{(c)}y_{j}^{(c)}y_{k}^{(c)}+f_{j}^{(c)}y_{i}^{(c)}y_{k}^{(c)}). \end{aligned}$$
(B.13c)

From Eqs. (B.11) and (B.13), the components for the elasticity tensors \({{{\varvec{C}}}^{m}}\), \({{{\varvec{E}}}^{n}}\) and \({\varvec{D}}\) in the macroscopic constitutive relations (20) are computed by

$$\begin{aligned}&{{\underline{\underline{{{C}^{1}}}}}_{ijkl}}=\frac{1}{{\hat{V}}}\sum \limits _{a=1}^{8}{\sum \limits _{b=1}^{8}{\underline{\underline{{\bar{K}}}}_{pp(i,k)}^{(ab)}\underline{y}_{(j)}^{(a)}\underline{y}_{(l)}^{(b)}}}, \end{aligned}$$
(B.14a)
$$\begin{aligned}&{{\underline{\underline{{{C}^{2}}}}}_{ij\underline{\beta }}}=\frac{1}{{\hat{V}}}\sum \limits _{a=1}^{8}{\underline{\underline{{\bar{K}}}}_{p\tilde{\lambda }(i,\underline{\beta })}^{(a\tilde{\lambda })}\underline{y}_{(j)}^{(a)}}, \end{aligned}$$
(B.14b)
$$\begin{aligned}&{{\underline{\underline{{{C}^{3}}}}}_{\underline{\alpha }jk}}=\frac{{{{\hat{V}}}_{I}}}{{\hat{V}}}\sum \limits _{a=1}^{8}{\underline{\underline{{\bar{K}}}}_{\tilde{\lambda }p(\underset{\scriptscriptstyle -}{\alpha },j)}^{(\tilde{\lambda }a)}\underline{y}_{(k)}^{(a)}}, \end{aligned}$$
(B.14c)
$$\begin{aligned}&{{\underline{\underline{{{C}^{4}}}}}_{\underline{\alpha }\underline{\beta }}}=\frac{{{{\hat{V}}}_{I}}}{{\hat{V}}}{{\underline{\underline{{\bar{K}}}}}_{\tilde{\lambda }\tilde{\lambda }(\underline{\alpha },\underline{\beta })}}, \end{aligned}$$
(B.14d)
$$\begin{aligned}&{{\underline{\underline{{{E}^{1}}}}}_{ijklm}}=\frac{1}{4\hat{V}}\sum \limits _{a=1}^{8}{\sum \limits _{b=1}^{8}{\left[ \underline{\underline{{\bar{K}}}}_{pp(i,k)}^{(ab)}\underline{y}_{(j)}^{(a)}\underline{y}_{(l)}^{(b)}\underline{y}_{(m)}^{(b)}+\underline{\underline{{\bar{K}}}}_{pp(i,l)}^{(ab)}\underline{y}_{(j)}^{(a)}\underline{y}_{(k)}^{(b)}\underline{y}_{(m)}^{(b)} \right] }}, \end{aligned}$$
(B.14e)
$$\begin{aligned}&{{\underline{\underline{{{E}^{2}}}}}_{\underline{\alpha }jkl}}=\frac{{{{\hat{V}}}_{I}}}{4\hat{V}}\sum \limits _{a=1}^{8}{\left[ \underline{\underline{{\bar{K}}}}_{\tilde{\lambda }p(\underline{\alpha },j)}^{(\tilde{\lambda }a)}\underline{y}_{(k)}^{(a)}\underline{y}_{(l)}^{(a)}+\underline{\underline{{\bar{K}}}}_{\tilde{\lambda }p(\underline{\alpha },k)}^{(\tilde{\lambda }a)}\underline{y}_{(j)}^{(a)}\underline{y}_{(l)}^{(a)} \right] }, \end{aligned}$$
(B.14f)
$$\begin{aligned}&{{\underline{\underline{{{E}^{3}}}}}_{ijklm}}=\frac{1}{4\hat{V}}\sum \limits _{a=1}^{8}{\sum \limits _{b=1}^{8}{\left[ \underline{\underline{{\bar{K}}}}_{pp(i,l)}^{(ab)}\underline{y}_{(j)}^{(a)}\underline{y}_{(k)}^{(a)}\underline{y}_{(m)}^{(b)}+\underline{\underline{{\bar{K}}}}_{pp(j,l)}^{(ab)}\underline{y}_{(i)}^{(a)}\underline{y}_{(k)}^{(a)}\underline{y}_{(m)}^{(b)} \right] }}, \end{aligned}$$
(B.14g)
$$\begin{aligned}&{{\underline{\underline{{{E}^{4}}}}}_{ijk\underline{\beta }}}=\frac{1}{4\hat{V}}\sum \limits _{a=1}^{8}{\left[ \underline{\underline{{\bar{K}}}}_{p\tilde{\lambda }(i,\underline{\beta })}^{(a\tilde{\lambda })}\underline{y}_{(j)}^{(a)}\underline{y}_{(k)}^{(a)}+\underline{\underline{{\bar{K}}}}_{p\tilde{\lambda }(j,\underline{\beta })}^{(a\tilde{\lambda })}\underline{y}_{(i)}^{(a)}\underline{y}_{(k)}^{(a)} \right] }, \end{aligned}$$
(B.14h)
$$\begin{aligned}&{{\underline{\underline{D}}}_{ijklmn}}=\frac{1}{16\hat{V}}\sum \limits _{a=1}^{8}{\sum \limits _{b=1}^{8}{\left[ \underline{\underline{{\bar{K}}}}_{pp(i,l)}^{(ab)}\underline{y}_{(j)}^{(a)}\underline{y}_{(k)}^{(a)}\underline{y}_{(m)}^{(b)}\underline{y}_{(n)}^{(b)}+\underline{\underline{{\bar{K}}}}_{pp(i,m)}^{(ab)}\underline{y}_{(j)}^{(a)}\underline{y}_{(k)}^{(a)}\underline{y}_{(l)}^{(b)}\underline{y}_{(n)}^{(b)} \right. }} \nonumber \\&\left. +\underline{\underline{{\bar{K}}}}_{pp(j,l)}^{(ab)}\underline{y}_{(i)}^{(a)}\underline{y}_{(k)}^{(a)}\underline{y}_{(m)}^{(b)}\underline{y}_{(n)}^{(b)}+\underline{\underline{{\bar{K}}}}_{pp(j,m)}^{(ab)}\underline{y}_{(i)}^{(a)}\underline{y}_{(k)}^{(a)}\underline{y}_{(l)}^{(b)}\underline{y}_{(n)}^{(b)} \right] . \end{aligned}$$
(B.14i)

with \(i,j,k,l,m,n=1,2,3\) and \(\underline{\alpha },\underline{\beta }=1,2,\cdots ,9\). Taking \(\underline{\underline{{\bar{K}}}}_{pp(i,l)}^{(ab)}\) as an example for notation, the superscripts a and b denote the partition in the matrix \({{\underline{\underline{{\bar{K}}}}}_{pp}}\), whereas the subscripts i and l are indices for components.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, X., Gao, K., Huang, J. et al. A three-dimensional computational multiscale micromorphic analysis of porous materials in linear elasticity. Arch Appl Mech 94, 819–840 (2024). https://doi.org/10.1007/s00419-024-02549-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-024-02549-x

Keywords

Navigation