Skip to main content
Log in

Computational investigation of the mitigation of an underwater explosion

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The protection effects of a mitigation layer in an underwater explosion are investigated here. The explosion shock loads on a mitigated structure are computed by a Mie–Grüneisen mixture model. Validation tests show that the model is efficient for the underwater explosion problem. Then underwater explosion problems with different mitigation layers are simulated here. In these simulations, special attention is paid on the second shock wave, which is induced by the reflection of the main shock wave. From the results, it is found that the shock impedance of the mitigation layer plays an important role. It determines not only the property of second shock loads, but also the occurrence of protection effects of the mitigation layer. After that the protection effects of layer thickness and explosive–structure distance are studied here. It is found that these factors influence the main shock slightly, but have significant influence on the second shock. In addition, the compressible structure can also be protected by the mitigation layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cole R.H.: Underwater Explosion. Princeton University Press, New Jersey (1948)

    Google Scholar 

  2. Li Z.R., Sun L., Zong Z. et al.: Some dynamical characteristics of a non-spherical bubble in proximity to a free surface. Acta Mech. 223, 2331–2355 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu T.G., Khoo B.C., Yeo K.S.: The numerical simulations of explosion and implosion in air: use of a modified Harten’s TVD scheme. Int. J. Numer. Methods Fluids 31, 661–680 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu T.G., Khoo B.C., Yeo K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190, 651–681 (2003)

    Article  MATH  Google Scholar 

  5. Xu L., Liu T.G.: Modified ghost fluid method for underwater explosion on thin plate. In: Chinese Congress on Computational Mechanics 2010, The 8th Southern Conference on Computational Mechanics, Mianyang, China, 2010 (in Chinese)

  6. Fedkiw R.P., Aslam T., Merriman B., Osher S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang J.T., Zhang H.S.: Level set method for numerical simulation of a cavitation bubble, its growth, collapse and rebound near a rigid wall. Acta Mech. Sinica 23, 645–653 (2007)

    Article  MATH  Google Scholar 

  8. Xie W.F., Liu T.G., Khoo B.C.: The simulation of cavitating flows induced by underwater shock and free surface interaction. Appl. Numer. Math. 57, 734–745 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xie W.F., Young Y.L., Liu T.G. et al.: Dynamic response of deformable structures subjected to shock load and cavitation reload. Comput. Mech. 40, 667–681 (2007)

    Article  MATH  Google Scholar 

  10. Liu M.B., Liu G.R., Lam K.Y. et al.: Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Comput. Fluids 32, 305–322 (2003)

    Article  MATH  Google Scholar 

  11. Liu M.B., Liu G.R., Lam K.Y. et al.: Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Comput. Mech. 30, 667–681 (2003)

    Google Scholar 

  12. Liu M.B., Liu G.R., Lam K.Y.: Investigations into water mitigation using a meshless particle method. Shock Waves 12, 181–195 (2002)

    Article  Google Scholar 

  13. Zhang A.M., Yang W.S., Yao X.L.: Numerical simulation of underwater contact explosion. Appl. Ocean Res. 34, 10–20 (2012)

    Article  Google Scholar 

  14. Yang G., Han X., Hu D.A.: Computer simulation of two-dimensional linear-shaped charge jet using smoothed particle hydrodynamics. Eng. Comput. 28, 58–75 (2011)

    Article  Google Scholar 

  15. Shin Y.S.: Ship shock modeling and simulation for far-field underwater explosion. Comput. Struct. 82, 2211–2219 (2004)

    Article  Google Scholar 

  16. Pishevar A.R., Amirifar R.: An adaptive ALE method for underwater explosion simulations including cavitation. Shock Waves 20, 425–439 (2010)

    Article  MATH  Google Scholar 

  17. Liang, L.H., Xun, P.P., Wan, C.: Study on underwater explosion shock characteristic of rudder based on ALE method. In: 2011 International conference on system science, engineering design and manufacturing informatization. Harbin, China (2011)

  18. Kim J.H., Shin H.C.: Application of the ALE technique for underwater explosion analysis of a submarine liquefied oxygen tank. Ocean Eng. 35, 812–822 (2008)

    Article  Google Scholar 

  19. Jin Q.K., Ding G.Y.: A finite element analysis of ship sections subjected to underwater explosion. Int. J. Impact Eng. 38, 558–566 (2011)

    Article  Google Scholar 

  20. Ding P., Arjaan B.: simulation of under water explosion using MSC.Dytran. MSC.Software Corporation. 2300 Traverwood Drive. Ann Arbor, MI 48105 (2004)

  21. Cheng M., Hung K.C., Chong O.Y.: Numerical study of water mitigation effects on blast wave. Shock Waves 14, 217–223 (2005)

    Article  Google Scholar 

  22. Glascoe, L., McMichael, L., Vandersall, K.S., et al.: Underwater blast experiments and modeling for shock mitigation. In; 14th International detonation symposium. LLNL-CONF-425235, California (2010)

  23. Glascoe L., Margraf J., McMichael L. et al.: A mitigation scheme for underwater blast: experiments and modeling. AIP Conf. Proc. 1426, 721–724 (2012)

    Article  Google Scholar 

  24. Shyue K.M.: A fluid-mixture type algorithm for compressible multi-component flow with Mie–Grüneisen equation of state. J. Comput. Phys. 171, 678–707 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ward G.W., Pullin D.I.: A hybrid, center-difference, limiter method for simulations of compressible multicomponent flows with Mie–Grüneisen equation of state. J. Comput. Phys. 229, 2999–3018 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee E., Finger M., Collins W.: JWL Equation of State Coefficients for High Explosives. Report UCID-16189. Lawrence Livermore National Laboratory, Livermore (1973)

    Book  Google Scholar 

  27. Steinberg D.J.: Spherical Explosions and the Equation of State of Water. Report UCID-20974. Lawrence Livermore National Laboratory, Livermore (1987)

    Book  Google Scholar 

  28. Zhang, B.P., Zhang, Q.M., Huang, F.L. (2006) Detonation physics. Beijing: Weapon Industry Press (in Chinese)

  29. Saurel R., Abgrall R.: A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21, 1115–1145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kerley, G.I.: The linear u s u p relation in shock-wave physics, Kerley Technical Services Research Report (2006)

  31. Shyue K.M.: A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state. J. Comput. Phys. 171, 678–707 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Abgrall R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, Z.D., Zong, Z., Sun, L.: A Mie–Grüneisen mixture Eulerian model for underwater explosion. Engineering Computations, Accepted

  34. Abgrall R., Karni S.: A comment on the computation of non-conservatie products. J. Comput. Phys. 229, 2759–2763 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu Z.D., Zong Z.: Numerical calculation of multi-component conservative Euler equations under Mie–Grüneisen equation of state. Chin. J. Comput. Phys. 28, 803–809 (2011)

    Google Scholar 

  36. Zamyshlyayev, B.V.: Dynamic loads in underwater explosion. AD-757183 (1972)

  37. Baird J.: Explosive shocks and impedance mismatch in Armatures. Electromagn. Phenom. 3, 405–413 (2003)

    Google Scholar 

  38. Miller G.H., Puckett E.G.: A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128, 134–164 (1996)

    Article  MATH  Google Scholar 

  39. Shyue K.M.: A high-resolution mapped grid algorithm for compressible multiphase flow problems. J. Comput. Phys. 229, 8780–8801 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shyue K.M.: A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions. J. Comput. Phys. 215, 219–244 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. D. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z.D., Sun, L. & Zong, Z. Computational investigation of the mitigation of an underwater explosion. Acta Mech 224, 3159–3175 (2013). https://doi.org/10.1007/s00707-013-0909-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0909-z

Keywords

Navigation