Skip to main content
Log in

Nonlinear nonlocal pull-in instability of boron nitride nanoswitches

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present study, nonlinear pull-in instability of boron nitride nanoswitches (BNNSs) subjected to electrostatic and van der Waals (vdW) forces is investigated. Based on Euler–Bernoulli beam theory, von Kármán geometric nonlinearity, nonlocal piezoelasticity theory and the principle of virtual work, the governing equations are obtained. The differential quadrature method is employed to discretize the nonlinear governing equations, which are then solved by a direct iterative method to obtain the nonlinear pull-in and pull-out voltages for cantilever and fixed–fixed boundary conditions. A detailed parametric study is conducted to elucidate the influences of nonlocal parameter, vdW force, fringing field, beam length and gap distance on the behavior of the pull-in instability voltage. Numerical results indicate that the magnitude of the pull-in voltage increases with increase in the gap distance. Furthermore, as the effective gap distance increases, the pull-out voltage tends toward the electrostatically pull-out voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Konacs G.T.A.: Micromachines Tranducers Sourcebook. McGraw-Hill, New York (1998)

    Google Scholar 

  2. Osterberg P.M., Senturia S.D.: M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. Syst. 6, 107–118 (1997)

    Article  Google Scholar 

  3. Bochobza-Degani O., Nemirovsky Y.: Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model. Sens. Act. A 97, 569–578 (2002)

    Article  Google Scholar 

  4. Bernstein, D., Guidotti, P., Pelesko, J.A.: Mathematical analysis of an electrostatically actuated MEMS device. In: Proceedings of Modeling and Simulation of Microsystems, 489–492 (2000)

  5. Pelesko, J.A.: Multiple solutions in electrostatic MEMS. In: Proceedings of Modeling and Simulation of Microsystems, pp. 290–293 (2001)

  6. Ding J.N., Wen S.Z., Meng Y.G.: Theoretical Study of the Sticking of a Membrane Strip in MEMS under the Casimir effect. J. Micromech. Microeng. 11, 202–208 (2001)

    Article  Google Scholar 

  7. Hamaker H.C.: The londen-van der Waals attraction between spherical particles. J. Physica 4, 1058–1072 (1937)

    Article  Google Scholar 

  8. Israelachvili J.N.: Intermolecular and Surface Forces. Academic Press, New York (1992)

    Google Scholar 

  9. Lamoreaux S.K.: The Casimir force background, experiments, and applications. Rep. Prog. Phys. 68, 201–236 (2005)

    Article  Google Scholar 

  10. Dequesnes M., Rotkin S.V., Aluru N.R.: Calculation of pull-in voltages for carbon nanotube-based nanoelectromechanical switches. Nanotech. 13, 120–131 (2002)

    Article  Google Scholar 

  11. Rotkin S.V.: Analytical calculations for nanoscale electromechanical systems. Electrochem. Soc. Proc. 6, 90–97 (2002)

    Google Scholar 

  12. Van Spengen W.M., Puers R., De Wolf I.: A physical model to predict stiction in MEMS. J. Micromech. Microeng. 12, 702–713 (2002)

    Article  Google Scholar 

  13. Linand W.H., ans Zhao Y.P.: Dynamic behavior of nanoscale electrostatic actuators. Chin. Phys. Lett. 20, 2070–2073 (2003)

    Article  Google Scholar 

  14. Ramezani A., Alasty A., Akbari J.: Influence of Van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators. J. Microsyst. Technol. 12, 1153–1161 (2006)

    Article  Google Scholar 

  15. Ghorbanpour Arani A., Amir S., Shajari A.R., Mozdianfard M.R.: Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory. Compos. Part B Eng. 43, 195–203 (2012)

    Article  Google Scholar 

  16. Oh E.S.: Elastic properties of boron-nitride nanotubes through the continuum lattice approach. Mat. Lett. 43, 859–862 (2010)

    Article  Google Scholar 

  17. Song J., Huang Y., Jiang H., Hwang K.C., Yu M.F.: Deformation and bifurcation analysis of boron-nitride nanotubes. Int. J. Mech. Sci. 48, 1197–1207 (2006)

    Article  MATH  Google Scholar 

  18. Ghorbanpour Arani A., Roudbari M.A., Amir S.: Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle. Physica B 407, 3646–3653 (2012)

    Article  Google Scholar 

  19. Ghorbanpour Arani A., Kolahchi R., Mosallaie Barzoki A.A.: Effect of material in-homogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric rotating shaft. Appl. Math. Model. 35, 2771–2789 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eringen C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  21. Shu C.: Differential Quadrature and its Application in Engineering: Engineering Applications. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  22. Yang J., Xiang H.J.: Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators. Smart Mat. Struct. 16, 784–797 (2007)

    Article  MathSciNet  Google Scholar 

  23. Zong Z., Zhang Y.: Advanced Differential Quadrature Methods. CRC Press, New York (2009)

    Book  MATH  Google Scholar 

  24. Yang J., Jia X.L., Kitipornchai S.: Pull-in instability of nano-switches using nonlocal elasticity theory. J. Phys. D Appl. Phys. 41, 035103 (2010)

    Article  Google Scholar 

  25. Basu S., Prabhakar A., Bhattacharya E.: Estimation of Stiction Force From Electrical and Optical Measurements on Cantilever Beams. J. Microelectromech. Syst. 16, 1254–1262 (2007)

    Article  Google Scholar 

  26. Chakraborty S., Bhattacharya A., Bhattacharyya T.K.: Experimental analysis of pull-out voltage of electrostatically actuated microcantilever beam based on contact-stiction model. J. Micro Nano Lett. 6, 43–47 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghorbanpour Arani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorbanpour Arani, A., Ghaffari, M., Jalilvand, A. et al. Nonlinear nonlocal pull-in instability of boron nitride nanoswitches. Acta Mech 224, 3005–3019 (2013). https://doi.org/10.1007/s00707-013-0908-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0908-0

Keywords

Navigation