Skip to main content
Log in

Non-equilibrium thermodynamics and variational principles for fully coupled thermal–mechanical–chemical processes

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the chemical Gibbs function variational principle, the Helmholtz function variational principle and the internal energy variational principle based on irreversible thermodynamics are proposed for the thermal–chemical–mechanical fully coupling problems. The complete fully coupling governing equations, including the heat conduction, mass diffusion and chemical reactions, are derived from the variational principles. The convective effect can also be derived in the diffusion and energy equations from the variational principles naturally. Moreover, the concentrations and entropy jump conditions on the moving interface between the products due to chemical reactions and the matrix can be derived from the variational principles naturally. This work provides the basis for the analyses and computations of thermochemomechanical coupling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao V.S., Hughes T.J.R.: On modeling thermaloxidation of silicon I: theory. Int. J. Mech. Eng. 47, 341–358 (2000)

    MATH  Google Scholar 

  2. Wu C.H.: The role of Eshelby stress in composition-generated and stress-assisted diffusion. J. Mech. Phys. Solids 49, 1771–1794 (2001)

    Article  MATH  Google Scholar 

  3. Favergeon J., Montesin T., Bertrand G.: Mechano-chemical aspects of high temperature oxidation: a mesoscopic model applied to zirconium alloys. Oxid. Metal 64, 253–278 (2005)

    Article  Google Scholar 

  4. Rambert G., Grandidier J.C., Aifantis E.C.: On the direct interactions between heat transfer, mass transport and chemical processes within gradient elasticity. Eur. J. Mech. A Solids 26, 68–87 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gigliotti M., Grandidier J.C.: Chemo-mechanics couplings in polymer matrix materials exposed to thermo-oxidative environments. CR Mech. 338, 164–175 (2010)

    Article  MATH  Google Scholar 

  6. Gigliotti M., Grandidier J.C., Lafarie-Frenot M.C.: Assessment of chemo-mechanical coupling in polymer matrix materials exposed to thermo-oxidative environments at high temperatures and under tensile loadings. Mech. Mater. 43, 431–443 (2011)

    Article  Google Scholar 

  7. Craig S.L.: A tour of force. Nature 487, 176–177 (2012)

    Article  Google Scholar 

  8. Nowacki W.: Dynamical problems of thermodiffusion in elastic solids. Proc. Vib. Prob. 15, 105–128 (1974)

    MathSciNet  MATH  Google Scholar 

  9. Nowacki W.: Some general theorems of thermopiezoelectricity. J. Thermal Stress 1, 171–182 (1978)

    Article  MathSciNet  Google Scholar 

  10. Kuang Z.B.: Some problems in electrostrictive and magnetostrictive materials. Acta Mech. Solida Sinica 20, 219–227 (2007)

    Article  Google Scholar 

  11. Kuang Z.B.: Some variational principles in elastic dielectric and elastic magnetic materials. Eur. J. Mech. A/Solids 27, 504–514 (2007)

    Article  MathSciNet  Google Scholar 

  12. Kuang Z.B.: Variational principles for generalized dynamical theory of thermopiezoelectricity. Acta Mech. 203, 1–11 (2009)

    Article  MATH  Google Scholar 

  13. Kuang Z.B.: Variational principles for generalized thermodiffusion theory in pyroelectricity. Acta Mech. 214, 275–289 (2010)

    Article  MATH  Google Scholar 

  14. Suo Y.H., Shen S.: Dynamical theoretical model and variational principles for coupled temperature–diffusion–mechanics. Acta Mech. 223, 29–41 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Prigogine, I., Kondepudi, D.: Thermodynamique. Editions Odile Jacob (1999)

  16. De Groet S.R.: Thermodynamics of Irreversible Processes. North-Holland Publishing Company, Amsterdam (1952)

    Google Scholar 

  17. Germain P., Nguyen Q.S., Suquet P.: Continuum thermodynamics. J. Appl. Mech. 50, 1010–1020 (1983)

    Article  MATH  Google Scholar 

  18. Kuang, Z.B.: Nonlinear continuum mechanics. Xi’an Jiaotong University Press, Xi’an (1989, in Chinese)

  19. Dong X.L., Feng X., Hwang K.C.: Oxidation stress evolution and relaxation of oxide film/metal substrate system. J. Appl. Phys. 112, 023502 (2012)

    Article  Google Scholar 

  20. Dong X.L., Feng X.F., Feng X., Hwang K.C.: Diffusion and stress coupling effect during oxidation at high temperature. J. Am. Ceram. Soc. 96, 44–46 (2013)

    Article  Google Scholar 

  21. Garcia E.A., Kovacs J.: Diffusion model for the oxidation of zirconium at 573 and 623 k. J. Nucl. Mater. 210, 78–83 (1994)

    Article  Google Scholar 

  22. Levich V.: Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengping Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, S., Shen, S. Non-equilibrium thermodynamics and variational principles for fully coupled thermal–mechanical–chemical processes. Acta Mech 224, 2895–2910 (2013). https://doi.org/10.1007/s00707-013-0907-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0907-1

Keywords

Navigation