Skip to main content
Log in

Nonconventional thermodynamics, indeterminate couple stress elasticity and heat conduction

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We present a phenomenological thermodynamic framework for continuum systems exhibiting responses which may be nonlocal in space and for which short time scales may be important. Nonlocality in space is engendered by state variables of gradient type, while nonlocalities over time can be modelled, e.g. by assuming the rate of the heat flux vector to enter into the heat conduction law. The central idea is to restate the energy budget of the system by postulating further balance laws of energy, besides the classical one. This allows for the proposed theory to deal with nonequilibrium state variables, which are excluded by the second law in conventional thermodynamics. The main features of our approach are explained by discussing micropolar indeterminate couple stress elasticity and heat conduction theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amanatidou E., Aravas N.: Mixed finite element formulations of strain-gradient elasticity problems. Comput. Methods Appl. Mech. Eng. 191, 1723–1751 (2002)

    Article  ADS  MATH  Google Scholar 

  2. Brand L.: Vector and Tensor Analysis. Wiley, New York (1948)

    MATH  Google Scholar 

  3. Carminati R.: Transport in dilute media. In: Volz, S. (ed.) Microscale and Nanoscale Heat Transfer, pp. 15–35. Springer, Berlin (2007)

    Google Scholar 

  4. Casas-Vázquez J., Jou D.: On a phenomenological non-equilibrium entropy for a class of rigid heat conductors. J. Phys. A 14, 1225–1231 (1981)

    Article  ADS  Google Scholar 

  5. Coleman B.D.: Thermodynamics of materials with memory. Arch. Rat. Mech. Anal. 17, 1–46 (1964)

  6. Coleman B.D., Gurtin M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)

    Article  ADS  Google Scholar 

  7. Coleman B.D., Noll W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Groot S.R., Mazur P.: Non-Equilibrium Thermodynamics. North-Holland, Amsterdam (1962)

    MATH  Google Scholar 

  9. Dunn J.E.: Interstitial working and a nonclassical continuum thermodynamics. In: Serrin, J. (ed.) New Perspectives in Thermodynamics, pp. 187–222. Springer, Berlin (1986)

    Chapter  Google Scholar 

  10. Dunn J.E., Serrin J.: On the thermodynamics of interstitial working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eringen A.C.: A unified theory of thermomechanical materials. Int. J. Eng. Sci. 4, 179–202 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eringen A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture, an Advanced Treatise, Vol. II Mathematical Fundamentals, pp. 621–729. Academic Press, New York (1968)

    Google Scholar 

  13. Germain P., Nguyen Q.S., Suquet P.: Continuum thermodynamics. J. Appl. Mech. 50, 1010–1020 (1983)

    Article  ADS  MATH  Google Scholar 

  14. Glansdorff P., Prigogine I.: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley, London (1971)

    MATH  Google Scholar 

  15. Greffet J.-J.: Laws of macroscopic heat transfer and their limits. In: Volz, S. (ed.) Microscale and Nanoscale Heat Transfer, pp. 1–13. Springer, Berlin (2007)

    Google Scholar 

  16. Hajmohammadi M.R., Alizadeh Abianeh V., Moezzinajafabadi M., Daneshi M.: Fork-shaped highly conductive pathways for maximum cooling in a heat generated piece. Appl. Therm. Eng. 61, 228–235 (2013)

    Article  Google Scholar 

  17. Hajmohammadi M.R., Joneydi Shariatzadeh O., Moulod M., Nourazar S.S.: Phi and psi shaped conductive routes for improved cooling in a heat generating piece. Int. J. Therm. Sci. 77, 66–74 (2014)

    Article  Google Scholar 

  18. Hajmohammadi M.R., Moulod M., Joneydi Shariatzadeh O., Nourazar S.S.: Essential reformulations for optimization of highly conductive inserts embedded into rectangular chip exposed to a uniform heat flux. J. Mech. Eng. Sci. 228(13), 2337–2346 (2014)

    Article  Google Scholar 

  19. Hutter K.: The foundations of thermodynamics, its basic postulates and implications. a review of modern thermodynamics. Acta Mech. 27, 1–54 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hutter K., Wang Y.: Phenomenological thermodynamics and entropy principles. In: Warnecke, G., Greven, A., Keller, G. (eds.) Entropy, pp. 57–78. Princeton University Press, Princeton (2003)

    Google Scholar 

  21. Ireman P., Nguyen Q.-S.: Using the gradients of the temperature and internal parameters in continuum thermodynamics. Comptes Rendus Méc. 333, 249–255 (2004)

    Article  ADS  MATH  Google Scholar 

  22. Joseph D.D., Preziosi L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Jou D., Casas-Vázquez J., Lebon G.: Extended Irreversible Thermodynamics. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  24. Kondepudi D., Prigogine I.: Modern Thermodynamics. Wiley, New York (2007)

    MATH  Google Scholar 

  25. Lebon G., Jou D., Casas-Vázquez J.: Understanding Non-Equlibrium Thermodynamics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  26. Liu I.-S.: Continuum Mechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  27. Majumdar A.: Microscale transport phenomena. In: Rohsenow, W.M., Cho, Y.I., Hartnett, J.P. (eds.) Handbook of Heat Transfer, pp. 8. McGraw-Hill, New York (1998)

    Google Scholar 

  28. Malvern L.E.: Introduction to the Mechanics of a continuous medium. Prentice Hall, Englewood Cliffs (1969)

    MATH  Google Scholar 

  29. Maugin G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15, 173–192 (1990)

    Article  ADS  Google Scholar 

  30. Maugin G.A.: On the thermomechanics of continuous media with diffusion an/or weak nonlinearity. Arch. Appl. Mech. 75, 723–738 (2006)

    Article  ADS  MATH  Google Scholar 

  31. Maugin G.A., Muschik W.: Thermodynamics with internal variables, part I: general concepts. J. Non-Equilib. Thermodyn. 19, 217–249 (1994)

    ADS  MATH  Google Scholar 

  32. Mindlin R.D., Eshel N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  33. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  34. Muki R., Sternberg E.: The influence of couple-stresses on singular concentrations in elastic solids. ZAMP 16, 611–648 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  35. Müller I.: On the entropy inequality. Arch. Ration. Mech. Anal. 26, 118–141 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  36. Müller I., Ruggeri T.: Rational Extended Thermodynamics. Springer, New York (1998)

    Book  MATH  Google Scholar 

  37. Nguyen Q.-S.: Ann. Solid Struct. Mech. 1, 79–86 (2010)

    Article  Google Scholar 

  38. Smith, A.N., Norris P.M.: Microscale heat transfer. In: Bejan, A., Kraus, A.D. (ed.) Heat Transfer Handbook, pp. 1310–1357. Wiley, New York (2003)

  39. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  40. Truesdell C.: Rational Thermodynamics. Springer, New York (1984)

    Book  MATH  Google Scholar 

  41. Truesdell C., Noll W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik volume III/3, Springer, Berlin (1965)

    Google Scholar 

  42. Truesdell C., Toupin R.A.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik Volume III/1, Springer, Berlin (1960)

    Google Scholar 

  43. Zhang Z.-M.: Nano/Microscale Heat Transfer. Nanoscience and Technology Series. McGraw-Hill, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Tsakmakis.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alber, HD., Hutter, K. & Tsakmakis, C. Nonconventional thermodynamics, indeterminate couple stress elasticity and heat conduction. Continuum Mech. Thermodyn. 28, 699–719 (2016). https://doi.org/10.1007/s00161-014-0406-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0406-1

Keywords

Navigation