Skip to main content
Log in

Dynamic analysis of an electrostatically actuated circular micro-plate interacting with compressible fluid

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates the dynamic behavior of a circular micro-plate interacting with compressible fluid and excited by electrostatic force. Utilizing Kirchhoff’s thin plate theory for the actuating micro-plate and assuming inviscidity for the operating fluid, an eigenvalue problem of the coupled system is derived using Fourier-Bessel expansion. Investigating the change in free vibration properties of the system, a parametric study is done accounting for the variation of physical and geometric properties of the bounded domain. Then considering step input voltages, the response of the coupled system, pull-in time, and pull-in voltages are derived. It is shown that besides the electric permittivity the inertial effect of the contained fluid also changes the transient response significantly. The impact of fluid added mass is observed in the decreased response frequencies and increased pull-in times. In addition, by constructing phase plane diagrams, it is found that the attraction zones of stable fixed points vary for different contained fluids. This could affect the response of the micro-plate qualitatively when there exists an uncertainty in the initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miao J., Lin R., Chen L., Zou Q., Lim S.Y., Seah S.H.: Design consideration in micromachined silicon microphones. Microelectron. J. 33, 21–28 (2002)

    Article  Google Scholar 

  2. Liu J., Martinn D.T., Kardirvel , Nishida K.T., Cattafesta L., Sheplak M., Mann B.P.: Nonlinear model and system identification of a capacitive dual-backplate MEMS microphone. J. Sound Vib. 309, 276–292 (2008)

    Article  Google Scholar 

  3. Jiankang W., Lijun L.: Liquid-solid coupled system of micropump. Acta Mech. Solida Sinica 19, 40–49 (2006)

    Google Scholar 

  4. Zengerle R., Ulrich J.: A bi-directional silicon micropump. Sens. Actuators A 50, 81–86 (1995)

    Article  Google Scholar 

  5. Rezazadeh G., Tayefe-Rezaei S., Ghesmati J., Tahmasebi A.: Investigation of the pull-in phenomenon in drug delivery micropump using Galerkin method. Sens. Transducers 78, 1098–1107 (2007)

    Google Scholar 

  6. Vogl G.W., Nayfeh A.H.: A reduced-order model for electrically actuated clamped circular plates. J. Micromech. Microeng. 15, 684–690 (2005)

    Article  Google Scholar 

  7. Saeedivahdat A., Abdolkarimzadeh F., Feyzi A., Rezazadeh G., Tarverdilo S.: Effect of thermal stresses on stability and frequency response of a capacitive microphone. Microelectron. J. 41, 865–873 (2010)

    Article  Google Scholar 

  8. Wang Y.-G., Lin W.-H., Li X.-M., Feng Z.-J.: Bending and vibration of an electrostatically actuated circular micro-plate in presence of Casimir force. Appl. Math. Model. 35, 2348–2357 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Batra R.C., Porfiri M., Spinello D.: Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force. Int. J. Solids Struct. 45, 3558–3583 (2008)

    Article  MATH  Google Scholar 

  10. Sun Y., Saka M.: Thermoelastic damping in micro-scale circular plate resonators. J. Sound Vib. 329, 328–337 (2010)

    Article  Google Scholar 

  11. Lin R., Wang W.: Structural dynamics of microsystems-current state of research and future directions. Mech. Syst. Signal Process. 20, 1015–1043 (2006)

    Article  Google Scholar 

  12. Batra R.C., Porfiri M., Spinello D.: Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater. Struct. 16, R23–R31 (2007)

    Article  Google Scholar 

  13. Li W.-L.: Squeeze film effects on dynamic performance of MEMS l-mirrors-consideration of gas rarefaction and surface roughness. Microsyst. Technol. 14, 315–324 (2008)

    Article  Google Scholar 

  14. Bao M., Yang H.: Squeeze film air damping in MEMS. Sens. Actuators A 136, 3–27 (2007)

    Article  Google Scholar 

  15. Pandey A.K., Pratap R.: Effect of flexural modes on squeeze film damping in MEMS cantilever resonators. J. Micromech. Microeng. 17, 2475–2484 (2007)

    Article  Google Scholar 

  16. Crescini D., Marioli D., Taroni A.: Piezoelectric thick-film fluid density sensor based on resonance vibration. IEEE Instrum. Meas. Technol. Conf. (St. Paul, MN) 2, 1368–1371 (1998)

    Google Scholar 

  17. Lindholm U.S., Kana D.D., Chu W.H., Abramson H.N.: Elastic vibration characteristics of cantilever plates in water. J. Ship Res. 9, 11–22 (1965)

    Google Scholar 

  18. Minami H.: Added mass of a membrane vibrating at finite amplitude. J. Fluids Struct. 12, 919–932 (1998)

    Article  MathSciNet  Google Scholar 

  19. Meyerhoff W.K.: Added masses of thin rectangular plates calculated from potential theory. J. Ship Res. 14, 100–111 (1970)

    Google Scholar 

  20. Ergin A., Ugurlu B.: Linear vibration analysis of cantilever plates partially submerged in fluid. J. Fluids Struct. 17, 927–939 (2003)

    Article  Google Scholar 

  21. Sinha J.K., Sandeep S., Rama R.A.: Added mass and damping of submerged perforated plates. J. Sound Vib. 260, 549–564 (2003)

    Article  Google Scholar 

  22. Yadykin Y., Tenetov V., Levin D.: The added mass of a flexible plate oscillating in a fluid. J. Fluids Struct. 17, 115–123 (2003)

    Article  Google Scholar 

  23. Gorman D.G., Trendafilov I., Mulholland A.J., Horacek J.: Analytical modelling and extraction of the modal behaviour of a cantilever beam in fluid interaction. J. Sound Vib. 308, 231–245 (2007)

    Article  Google Scholar 

  24. Tariverdilo S., Shahmardani M., Mirzapour J., Shabani R.: Asymmetric free vibration of circular plate in contact with incompressible fluid. Appl. Math. Model. 37, 228–239 (2013)

    Article  MathSciNet  Google Scholar 

  25. Zhao Y.-P., Wang L.S., Yu T.X.: Mechanics of adhesion in MEMS—a review. J. Adhesion Sci. Technol. 17, 519–546 (2003)

    Article  Google Scholar 

  26. Guo J.-G., Zhou L.-J., Zhao Y.-P.: Instability analysis of torsional MEMS/NEMS actuators under capillary force. J. Colloid Interface Sci. 331, 458–462 (2009)

    Article  Google Scholar 

  27. Lin W.-H., Zhao Y.-P.: Casimir effect on the pull-in parameters of nanometer switches. Microsyst. Technol. 11, 80–85 (2005)

    Google Scholar 

  28. Talebian S., Rezazadeh G., Fathalilou M., Toosi B.: Effect of temperature on pull-in voltage and natural frequency of an electrostatically actuated micro-plate. Mechatronics 20, 666–673 (2010)

    Article  Google Scholar 

  29. Wang Z., Zhao Y.-P.: Self-instability and bending behaviors of nano plates. Acta Mechanica Solida Sinica 22, 630–643 (2009)

    Google Scholar 

  30. Rezazadeh G., Fathalilou M., Shabani R., Tarverdilou S., Talebian S.: Dynamic characteristics and forced response of an electrostatically-actuated microbeam subjected to fluid loading. Microsyst. Technol. 15, 1355–1363 (2009)

    Article  Google Scholar 

  31. Sader J.E.: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84, 64–76 (1998)

    Article  Google Scholar 

  32. Harrison C., Tavernier E., Vancauwenberghe O., Donzier E., Hsud K., Goodwin A., Marty F., Mercier B.: On the response of a resonating plate in a liquid near a solid wall. Sens. Actuators A 134, 414–426 (2007)

    Article  Google Scholar 

  33. Moghimi Zand M., Ahmadian M.T.: Characterization of coupled-domain multi-layer micro-plates in pull-in phenomenon, vibrations and dynamics. Int. J. Mech. Sci. 49, 1226–1237 (2007)

    Article  Google Scholar 

  34. Ayela C., Nicu L.: Micromachined piezoelectric membranes with high nominal quality factors in Newtonian liquid media: a Lamb’s model validation at the microscale. Sens. Actuators B 123, 860–868 (2007)

    Article  Google Scholar 

  35. Wang Z., Wang F.-C., Zhao Y.-P.: Tap dance of a water droplet. Proc. R. Soc. A 468, 2485–2495 (2012)

    Article  Google Scholar 

  36. Roman, B., Bico, J.: Elasto-capillarity: deforming an elastic structure with a liquid droplet. J. Phys. Condens. Matter. 22 (2010). doi:10.1088/0953-8984/22/49/493101

  37. Tanaka T., Morigami M., Atoda N.: Mechanism of resist pattern collapse during development process. J. Appl. Phys. 32, 6059–6064 (1993)

    Google Scholar 

  38. Chakrapani N., Wei B., Carrillo A., Ajayan P.M., Kane R.S.: Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc. Natl. Acad. Sci. USA 101, 4009–4012 (2004)

    Article  Google Scholar 

  39. Ali S.M., Mantell S.C., Longmire E.K.: Mechanical performance of microcantilevers in liquids. J. Microelectromech. Syst. 20, 441–450 (2011)

    Article  Google Scholar 

  40. lnaba S., Akaishi K., Mori T., Hane K.: Analysis of the resonance characteristics of a cantilever vibrated photothermally in a liquid. J. Appl. Phys. 73, 2654–2658 (1993)

    Article  Google Scholar 

  41. Sorokin S.V., Chapman C.J.: Asymptotic analysis of nonlinear vibration of an elastic plate under heavy fluid loading. J. Sound Vib. 284, 1131–1144 (2005)

    Article  MATH  Google Scholar 

  42. Sorokin S.V., Kadyrov S.G.: modeling of nonlinear oscillations of elastic structures in heavy fluid loading conditions. J. Sound Vib. 222, 425–451 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shabani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabani, R., Sharafkhani, N., Tariverdilo, S. et al. Dynamic analysis of an electrostatically actuated circular micro-plate interacting with compressible fluid. Acta Mech 224, 2025–2035 (2013). https://doi.org/10.1007/s00707-013-0877-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0877-3

Keywords

Navigation