Skip to main content
Log in

Mechanical behavior of a rectangular capacitive micro-plate subjected to an electrostatic load

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This study aims at understanding the mechanical behavior and static response of an electrically actuated micro-plate, considering the effects of different boundary conditions. The equations of motion of rectangular micro-plate-based micro-electro-mechanical systems are derived in terms of partial differential equations, exploiting the classical plate theory and von Kármán geometric nonlinearity. Two different boundary conditions are considered, i.e., simply supported and clamped with different in-plane conditions. The Galerkin procedure is employed to obtain a second-order nonlinear ordinary differential equation in time with quadratic, cubic, quartic, and higher nonlinear terms. The attention is mainly focused on the method of elimination of singularity in the electrostatic force. Therefore, two methods are implemented to treat singularity. By using the method of multiple time scales, the transient behavior of the system is obtained. Moreover, a discussion is made on how different design parameters affect the static response of micro-plates. In order to validate the obtained results, a numerical method by using Matlab®/Simulink® is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Younis MI (2001) Investigation of the mechanical behavior of microbeam-based MEMS devices. Dissertation, Virginia Tech

  2. Zhao X, Abdel-Rahman EM, Nayfeh AH (2004) A reduced-order model for electrically actuated microplates. J Micromech Microeng 14(7):900

    Article  Google Scholar 

  3. Zhao X (2004) Modeling and simulation of MEMS Devices. Dissertation, Virginia Tech

  4. Younis MI, Abdel-Rahman EM, Nayfeh A (2003) A reduced-order model for electrically actuated microbeam-based MEMS. J Microelectromech Syst 12(5):672–680

    Article  Google Scholar 

  5. Zhang XM, Chau FS, Quan C, Lam YL, Liu AQ (2001) A study of the static characteristics of a torsional micromirror. Sens Actuators, A 90(1–2):73–81

    Article  Google Scholar 

  6. Younis MI (2004) Modeling and simulation of microelectromechanical systems in multi-physics fields. Dissertation, Virginia Tech

  7. Varadan VK, Vinoy KJ, Jose KA (2003) RF MEMS and their applications. Wiley

  8. Senturia SD (2002) Microsystem design. Kluwer Academic Publishers, New York, Boston

    Google Scholar 

  9. Zavracky PM, Majumder S, McGruer NE (1997) Micromechanical switches fabricated using nickel surface micromachining. J Microelectromech Syst 6(1):3–9

    Article  Google Scholar 

  10. Yao ZJ, Chen S, Eshelman S, Denniston D, Goldsmith C (1999) Micromachined low-loss microwave switches. J Microelectromech Syst 8(2):129–134

    Article  Google Scholar 

  11. Gretillat MA, Gretillat F, De Rooij NF (1999) Micromechanical relay with electrostatic actuation and metallic contacts. J Micromech Microeng 9(4):324

    Article  Google Scholar 

  12. Gretillat MA, Yang YJ, Hung ES, Rabinovich V, Ananthasuresh GK, De Rooij NF, Senturia SD (1997) Nonlinear electromechanical behaviour of an electrostatic microrelay. In Proceedings of International Solid State Sensors and Actuators Conference (Transducers' 97), vol 2, pp 1141–1144

  13. Castaner LM, Senturia SD (1999) Speed-energy optimization of electrostatic actuators based on pull-in. J Microelectromech Syst 8(3):290–298

    Article  Google Scholar 

  14. Hung ES, Senturia SD (1999) Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs. J Microelectromech Syst 8(3):280–289

    Article  Google Scholar 

  15. Cozma A, Puers R (1997) Electrostatic actuation as a self-testing method for silicon pressure sensors. Sens Actuators, A 60(1–3):32–36

    Article  Google Scholar 

  16. Faris W, Abdel-Rahman E, Nayfeh A (2002) Mechanical behavior of an electrostatically actuated micropump. In 43rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 1303

  17. Francais O, Dufour I (1998) Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena. Sens Actuators, A 70(1–2):56–60

    Article  Google Scholar 

  18. Fletcher CAJ (1984) Computational galerkin methods. Computational galerkin methods. Springer, Berlin, Heidelberg, pp 72–85

    Chapter  Google Scholar 

  19. Karim MF, Liu AQ, Alphones A, Yu AB (2006) A tunable bandstop filter via the capacitance change of micromachined switches. J Micromech Microeng 16(4):851

    Article  Google Scholar 

  20. Yu AB, Liu AQ, Zhang QX, Alphones A, Hosseini HM (2006) Micromachined DC contact capacitive switch on low-resistivity silicon substrate. Sens Actuators, A 127(1):24–30

    Article  Google Scholar 

  21. Huang JM, Liu AQ, Lu C, Ahn J (2003) Mechanical characterization of micromachined capacitive switches: design consideration and experimental verification. Sens Actuators, A 108(1–3):36–48

    Article  Google Scholar 

  22. Mao JJ, Lu HM, Zhang W, Lai SK (2020) Vibrations of graphene nanoplatelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory. Compos Struct 236:111813

    Article  Google Scholar 

  23. Mao JJ, Zhang W, Lu HM (2020) Static and dynamic analyses of graphene-reinforced aluminium-based composite plate in thermal environment. Aerosp Sci Technol 107:106354

    Article  Google Scholar 

  24. Kalhori H, Halkon B, Abbasnejad B, Li B, Shooshtari A (2021) Nonlinear vibration of an electrostatically excited capacitive microplate. Vibration engineering for a sustainable future. Springer, Cham, pp 3–9

    Chapter  Google Scholar 

  25. Chia CY (1980) Nonlinear analysis of plates. McGraw-Hill International Book Company.

  26. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press

    Book  Google Scholar 

  27. Elshenety A, El-Kholy EE, Abdou AF, Soliman M, Elhagry MM (2020) A flexible model for studying fringe field effect on parallel plate actuators. Journal of Electrical Systems and Information Technology 7(1):1–14

    Article  Google Scholar 

  28. Nayfeh AH, Mook DT, Holmes P (1979) Nonlinear oscillations. John Wiley, New York

    MATH  Google Scholar 

  29. Nayfeh AH (2008) Perturbation methods. Wiley

    Google Scholar 

  30. Hosseini SM, Kalhori H, Shooshtari A, Mahmoodi SN (2014) Analytical solution for nonlinear forced response of a viscoelastic piezoelectric cantilever beam resting on a nonlinear elastic foundation to an external harmonic excitation. Compos B Eng 67:464–471

    Article  Google Scholar 

  31. Hosseini SM, Shooshtari A, Kalhori H, Mahmoodi SN (2014) Nonlinear-forced vibrations of piezoelectrically actuated viscoelastic cantilevers. Nonlinear Dyn 78(1):571–583

    Article  MathSciNet  Google Scholar 

  32. Shooshtari A, Hoseini SM, Mahmoodi SN, Kalhori H (2012) Analytical solution for nonlinear free vibrations of viscoelastic microcantilevers covered with a piezoelectric layer. Smart Mater Struct 21(7):075015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Hamed Kalhori, Alireza Shooshtari]; Methodology: [Hamed Kalhori, Alireza Shooshtari]; Formal analysis and investigation: [Hamed Kalhori, Shabnam Tashakori, Bing Li]; Writing - original draft preparation: [Hamed Kalhori]; Writing - review and editing: [Hamed Kalhori, Shabnam Tashakori, Bing Li].

Corresponding author

Correspondence to Hamed Kalhori.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial and non-financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A

Appendix A

Constants of Eq. (27) for simply supported boundary conditions with zero tangential force and zero normal displacement are as follow

$$ \begin{aligned} B_{1} &= - (2880\beta^{4} \lambda V(t)^{2}\\ &\quad -\, 1440\pi^{4} - 1440\pi^{4} \beta^{4} - 2880\pi^{4} \beta^{2} )/1440\beta^{4} \hfill \\ B_{2} &= - 30720\lambda V(t)^{2} /1440\pi^{2} \hfill \\ B_{3} &= - \frac{{3240\beta^{4} \lambda V(t)^{2} + 1080\pi^{4} \eta^{2} \upsilon^{2} - 3240\pi^{4} \eta^{2} \beta^{4} - 4320\pi^{4} \eta^{2} \upsilon \beta^{2} + 1080\pi^{4} \eta^{2} \upsilon^{2} \beta^{4} - 3240\pi^{4} \eta^{2} }}{{1440\beta^{4} }} \hfill \\ B_{4} &= - 32768\lambda V(t)^{2} /1440\pi^{2} \hfill \\ B_{5} &= - 3375\lambda V(t)^{2} /1440 \hfill \\ B_{6} &= - 23040\lambda V(t)^{2} /5760\pi^{2} \hfill \\ \end{aligned} $$

Constants of Eq. (28) for simply supported boundary conditions with zero tangential force and zero normal displacement are as follows

$$ \begin{aligned} A_{1} &= - 0.1.44101238 \hfill \\ A_{2} & = 0.5625 \hfill \\ A_{3} &= \frac{0.00070361933}{{\beta^{4} }}(2.76880088 \cdot 10^{5} \beta^{2}\\ &\quad +\, 1.384400440 \cdot 10^{5} \beta^{4} + 1.38440044 \cdot 10^{5} ) \hfill \\ A_{4} &= \frac{0.00070361933}{{\beta^{4} }}( - 3.9898763711 \cdot 10^{5} \beta^{2} \\ &\quad -\, 1.9949381851 \cdot 10^{5} \beta^{4} - 1.9949381851 \cdot 10^{5} ) \hfill \\ A_{5} &= \frac{0.00070361933}{{\beta^{4} }}(1.5574504951 \cdot 10^{5} \beta^{2}\\ &\quad +\, 7.7872524474 \cdot 10^{5} \beta^{4} + 4.153201319 \cdot 10^{5} \beta^{2} \eta^{2} \upsilon \hfill \\ &\quad + 3.11490099 \cdot 10^{5} \eta^{2} + 7.787252474 \cdot 10^{5}\\ &\quad -\, 1.0383003301 \cdot 10^{5} \beta^{4} \eta^{2} \upsilon^{2} - 1.0383003301 \cdot 10^{5} \eta^{2} \upsilon^{2} \hfill \\ & \quad + 3.11490099 \cdot 10^{5} \beta^{4} \eta^{2} ) \hfill \\ A_{6} &= \frac{0.00070361933}{{\beta^{4} }}( - 5984814556 \cdot 10^{5} \beta^{2} \eta^{2} \upsilon\\ &\quad -\, 4.787851645 \cdot 10^{5} \eta^{2} + 1.795444367 \cdot 10^{5} \beta^{4} \eta^{2} \upsilon^{2} \hfill \\ &\quad + 1.795444367 \cdot 10^{5} \eta^{2} \upsilon^{2} - 4.787851645 \cdot 10^{5} \beta^{4} \eta^{2} ) \hfill \\ A_{7} &= \frac{0.00070361933}{{\beta^{4} }}(2.336175742 \cdot 10^{5} \beta^{2} \eta^{2} \upsilon\\ &\quad +\, 1.946813118 \cdot 10^{5} \eta^{2} - 7.787252474 \cdot 10^{5} \beta^{4} \eta^{2} \upsilon^{2} \hfill \\ &\quad - 7.787252474 \cdot 10^{5} \eta^{2} \upsilon^{2} + 1.946813118 \cdot 10^{5} \beta^{4} \eta^{2} ) \hfill \\ A_{8} &= - 1.621138938\lambda \hfill \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalhori, H., Shooshtari, A., Tashakori, S. et al. Mechanical behavior of a rectangular capacitive micro-plate subjected to an electrostatic load. Int. J. Dynam. Control 10, 1337–1348 (2022). https://doi.org/10.1007/s40435-021-00894-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-021-00894-1

Keywords

Navigation