Skip to main content
Log in

An attempt to separate elastic strain energy density of linear elastic anisotropic materials based on strains considerations

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A promising new effort toward the decomposition of the elastic strain energy density of linear elastic anisotropic materials into a dilatational and a distortional part is presented. By assuming that volume changes must keep the material symmetries unchanged, a new physical perspective is presented and interesting definitions are drawn. This new perspective necessitates the introduction of a strain parameter m characteristic of the material’s anisotropy. This strain parameter besides easing the calculation of the dilatational and distortional energetic terms additionally accounts for the directional sensitivity of anisotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mises von R.: Mechanik der festen Körper im plastisch deformablen Zustand. Math.-Phys. 1(4), 582–592 (1913)

    Google Scholar 

  2. Huber, M.T.: Distortion strain energy as a measure of strength of the materials (in Polish). Gzasopismo Techniczne XXII, Lwow (1904)

  3. Hencky H.: Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. ZAMM 4, 323–334 (1924)

    Article  Google Scholar 

  4. Kowalczyk K., Ostrowska-Maciejewska J.: Arch. Mech. 54(5–6), 497–523 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Sutcliffe S.: Spectral decomposition of the elasticity tensor. J. Appl. Mech. 59, 762–773 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rychlewski J.: Elastic energy decomposition and limit criteria. Adv. Mech. 7, 51–80 (1984)

    Google Scholar 

  7. Rychlewski J.: On Hooke’s law. PMM (English translation) 48, 303–314 (1984)

    MathSciNet  Google Scholar 

  8. Rychlewski J.: Unconventional approach to linear elasticity. Arch. Mech. 59(4), 149–171 (1995)

    MathSciNet  Google Scholar 

  9. Olszak W., Ostrowska-Maciejewska J.: The plastic potential in the theory of anisotropic elastic-plastic solids. Eng. Fract. Mech. 21, 625–632 (1985)

    Article  Google Scholar 

  10. Kowalczyk K., Ostrowska-Maciejewska J.: Energy-based limit conditions for transversally isotropic solids. Arch. Mech. 54, 497–523 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Kowalczyk K., Ostrowska-Maciejewska J.: The influence of internal restrictions on the elastic properties of anisotropic materials. Arch. Mech. 56, 220–232 (2004)

    Google Scholar 

  12. Tsai S.W., Wu R.A.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)

    Article  Google Scholar 

  13. Theocaris P.S.: Failure characterization of anisotropic materials by means of the elliptic paraboloid failure surface. Uspechi Mekhanikii (Advances in Mechanics) 10, 83–102 (1971)

    Google Scholar 

  14. Andrianopoulos N.P., Boulougouris V.C., Iliopoulos A.P.: On the separation of elastic strain energy in the general case of anisotropy: a direct approach. Arch. Mech. Eng. V.LIII(2), 153–163 (2006)

    Google Scholar 

  15. Burzyński, W.T.: Study of the strength hypotheses. Ph.D. thesis (in Polish). Lwow (1928)

  16. Malvern L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice Hall, Englewood Cliffs (1969)

    Google Scholar 

  17. Nye F.: Physical Properties of Crystals. Clarendon, Oxford (1957)

    MATH  Google Scholar 

  18. Voigt W.: Lehrbuch der Kristallphysik. Teubner, Leipzig (1910)

    Google Scholar 

  19. Itskov M., Aksel N.: Elastic constants and their admissible values for incompressible and slightly compressible anisotropic materials. Acta Mechanica 157(1–4), 81–96 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Andrianopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrianopoulos, N.P., Dernikas, I.T. An attempt to separate elastic strain energy density of linear elastic anisotropic materials based on strains considerations. Acta Mech 224, 1879–1885 (2013). https://doi.org/10.1007/s00707-013-0866-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0866-6

Keywords

Navigation