Skip to main content
Log in

A model for the Mullins effect during multicyclic equibiaxial loading

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we derive a model to describe the cyclic stress softening of a carbon-filled rubber vulcanizate through multiple stress–strain cycles with increasing values of the maximum strain, specializing to equibiaxial loading. Since the carbon-filled rubber vulcanizate is initially isotropic, we can show that following initial equibiaxial loading the material becomes transversely isotropic with preferred direction orthogonal to the plane defined by the equibiaxial loading. This is an example of strain-induced anisotropy. Accordingly, we derive nonlinear transversely isotropic models for the elastic response, stress relaxation, residual strain and creep of residual strain in order to model accurately the inelastic features associated with cyclic stress softening. These ideas are then combined with a transversely isotropic version of the Arruda–Boyce eight-chain model to develop a constitutive relation for the cyclic stress softening of a carbon-filled rubber vulcanizate. The model developed includes the effects of hysteresis, stress relaxation, residual strain and creep of residual strain. The model is found to compare extremely well with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arruda E.M., Boyce M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993). doi:10.1016/0022-5096(93)90013-6

    Article  Google Scholar 

  2. Bergström J.S., Boyce M.C.: Constitutive modelling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46, 931–954 (1998). doi:10.1016/S0022-5096(97)00075-6

    Article  MATH  Google Scholar 

  3. Bernstein B., Kearsley E.A., Zapas L.J.: A Study of Stress Relaxation with Finite Strain. Trans. Soc. Rheol. VII 71, 391–410 (1963). doi:10.1122/1.548963

    Article  Google Scholar 

  4. Chagnon G., Verron E., Gornet L., Marckmann G., Charrier P.: On the relevance of continuum damage mechanics as applied to the Mullins effect in elastomers. J. Mech. Phys. Solids 52, 1627–1650 (2004)

    Article  MATH  Google Scholar 

  5. Cohen A.: A Padé approximation to the inverse Langevin function. Rheol. Acta 30, 270–273 (1991). doi:10.1007/BF00366640

    Article  Google Scholar 

  6. Diani J., Fayolle B., Gilormini P.: A review on the Mullins effect. Eur. Polym. J. 45, 601–612 (2009). doi:10.1016/j.eurpolymj.2008.11.017

    Article  Google Scholar 

  7. Dorfmann A., Ogden R.W.: A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber. Int. J. Solids Struct. 40, 2699–2714 (2003). doi:10.1016/S0020-7683(03)00089-1

    Article  Google Scholar 

  8. Dorfmann A., Ogden R.W.: A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41, 1855–1878 (2004). doi:10.1016/j.ijsolstr.2003.11.014

    Article  MATH  Google Scholar 

  9. Dorfmann A., Pancheri F.Q.: A constitutive model for the Mullins effect with changes in material symmetry. Int. J. Non-Linear Mech. 47, 874–887 (2012). doi:10.1016/j.ijnonlinmec.2012.05.004

    Article  Google Scholar 

  10. Gent A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996). doi:10.5254/1.3538357

    Article  MathSciNet  Google Scholar 

  11. Horgan C.O., Saccomandi G.: A Molecular-statistical basis for the gent constitutive model of rubber elasticity. J. Elast. 68, 167–176 (2002). doi:10.1023/A:1026029111723

    Article  MathSciNet  MATH  Google Scholar 

  12. Horgan C.O., Ogden R.W., Saccomandi G.: A theory of stress softening of elastomers based on finite chain extensibility. Proc. R. Soc. Lond. A 460, 1737–1754 (2004). doi:10.1098/rspa.2003.1248

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuhl E., Garikipati K., Arruda E.M., Grosh K.: Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network. J. Mech. Phys. Solids 53, 1552–1573 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lally C., Reid A.J., Prendergast P.J.: Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann. Biomed. Eng. 32, 1355–1364 (2004)

    Article  Google Scholar 

  15. Lockett F.J.: Nonlinear Viscoelastic Solids. Academic Press, London (1972)

    MATH  Google Scholar 

  16. Machado G., Chagnon G., Favier D.: Analysis of the isotropic models of the Mullins effect based on filled silicone rubber experimental results. Mech. Mater. 42, 841–851 (2010). doi:10.1016/j.mechmat.2010.07.001

    Article  Google Scholar 

  17. Machado G., Chagnon G., Favier D.: Induced anisotropy by the Mullins effect in filled silicone rubber. Mech. Mater. 50, 70–809 (2012). doi:10.1016/j.mechmat.2012.03.006

    Article  Google Scholar 

  18. Merckel Y., Diani J., Brieu M., Caillard J.: Constitutive modeling of the anisotropic behavior of Mullins softened filled rubbers. Mech. Mater. 57, 30–41 (2013). doi:10.1016/j.mechmat.2012.10.010

    Article  Google Scholar 

  19. Mullins L.: Effect of stretching on the properties of rubber. J. Rubber Res. 16(12), 275–289 (1947). doi:org/10.5254/1.3546914

    Google Scholar 

  20. Mullins L.: Softening of rubber by deformation. Rubber Chem. Technol. 42(1), 339–362 (1969). doi:10.5254/1.3539210

    Article  Google Scholar 

  21. Németh, I., Schleinzer, G., Ogden, R.W., Holzapfel, G.A.: On the modelling of amplitude and frequency-dependent properties in rubberlike solids. In: Austrell, P.E., Kari, L. (eds.) Constitutive Models for Rubber IV, pp. 285–298 (2005)

  22. Rickaby S.R., Scott N.H.: Transversely isotropic cyclic stress-softening model for the Mullins effect. Proc. R. Soc. Lond. A. 468, 4041–4057 (2012). doi:10.1098/rspa.2012.0461

    Article  MathSciNet  Google Scholar 

  23. Rickaby S.R., Scott N.H.: A cyclic stress softening model for the Mullins effect. Int. J. Solids Struct. 50, 111–120 (2013). doi:10.1016/j.ijsolstr.2012.09.006

    Article  Google Scholar 

  24. Rickaby, S.R., Scott, N.H.: Multicyclic modelling of softening in biological tissue. IMA J. Appl. Math. 1–19 (2013b). doi:10.1093/imamat/hxt008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rickaby, S.R., Scott, N.H. A model for the Mullins effect during multicyclic equibiaxial loading. Acta Mech 224, 1887–1900 (2013). https://doi.org/10.1007/s00707-013-0854-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0854-x

Keywords

Navigation