Skip to main content

Advertisement

Log in

Strain-induced crystallisation in natural rubber: a thermodynamically consistent model of the material behaviour using a multiphase approach

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Strain-induced crystallisation (SIC) is the phenomenon of elastomers to experience a pronounced nonlinearity under large deformations of several hundred percentages of strain, which is advantageous for industrial applications due to the resulting positive properties such as increasing crack growth resistance and fatigue behaviour. The overall objective of the current study is the constitutive modelling of the material behaviour of natural rubber when stretched uniaxially. Initially, unfilled natural rubber is considered. Cyclic traction experiments in which crystallinity, elongation and stresses are simultaneously measured are found in the literature. The same vulcanisate is used to conduct additional experiments in the present laboratory. The experimental investigations focus on uniaxial tension tests, conducted with a variety of parameters such as time and stretch rate. The current work presents an approach to model the SIC phenomenon. The model considers thermoelasticity and crystallisation. The approach of the hybrid free energy is used to derive constitutive equations and to meet thermomechanical consistency. However, the effect of temperature is not the focus of the current work. Furthermore, the contribution of a mixing energy is represented in the free energy. The derivation of this mixing entropy is explained in detail by making use of different assumptions and approaches, e.g. the consideration of ideal mixtures. Here, a one-dimensional constitutive model for strain-crystallising rubber is developed, which can be extended with a micro-sphere approach (concept of representative directions) to a full thermodynamically consistent anisotropic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Phr is the abbreviation for parts per hundred, i.e. for 100 g NR 1.2 g sulphur is introduced.

  2. Changes in shape are also called conformation.

  3. Please note, that all values in the physical terms are specific values but the description ‘specific’ is not used continuously.

  4. The directional Helmholtz free energy per unit mass is defined as \({\hat{\psi }}_\alpha =\frac{{\hat{\varPsi }}_\alpha }{m_\alpha }\).

  5. The wording ‘entropy of mixing’ or ‘mixing entropy’ is used as an abbreviation for the total change in the entropy of a mixture.

References

  1. Acken, M.F., Singer, W.E., Davey, W.P.: X-ray study of rubber structure. Rubber Chem. Technol. 5(1), 30–38 (1932). https://doi.org/10.5254/1.3539315

    Article  Google Scholar 

  2. Albouy, P.-A., Guillier, G., Petermann, D., Vieyres, A., Sanseau, O., Sotta, P.: A stroboscopic X-ray apparatus for the study of the kinetics of strain-induced crystallization in natural rubber. Polymer (UK) 53(15), 3313–3324 (2012). https://doi.org/10.1016/j.polymer.2012.05.042. ISSN 00323861

    Article  Google Scholar 

  3. Albouy, P.-A., Vieyres, A., Pérez-Aparicio, R., Sanséau, O., Sotta, P.: The impact of strain-induced crystallization on strain during mechanical cycling of cross-linked natural rubber. Polymer (UK) 55(16), 4022–4031 (2014). https://doi.org/10.1016/j.polymer.2014.06.034. ISSN 00323861

    Article  Google Scholar 

  4. Alexander, L.E., Ohlberg, S., Taylor, G.R.: X-ray diffraction studies of crystallization in elastomers. J. Appl. Phys. 26(9), 1068–1074 (1955)

    Article  ADS  Google Scholar 

  5. Alfrey, T., Mark, H., Mark, H.F.: A statistical treatment of crystallization phenomena in high polymers. J. Phys. Chem. 46(1), 112–118 (1942)

    Article  Google Scholar 

  6. Amnuaypornsri, S., Toki, S., Hsiao, B.S., Sakdapipanich, J.: The effects of endlinking network and entanglement to stress-strain relation and strain-induced crystallization of un-vulcanized and vulcanized natural rubber. Polymer 53(15), 3325–3330 (2012)

    Article  Google Scholar 

  7. Behnke, R., Berger, T., Kaliske, M.: Numerical modeling of time-and temperature-dependent strain-induced crystallization in rubber. Int. J. Solids Struct. 141, 15–34 (2018)

    Article  Google Scholar 

  8. Beurrot, S., Huneau, B., Verron, E.: In situ SEM study of fatigue crack growth mechanism in carbon black-filled natural rubber. J. Appl. Polym. Sci. 117(3), 1260–1269 (2010)

    Google Scholar 

  9. Brüning, K.: In-Situ Structure Characterization of Elastomers During Deformation and Fracture. Springer, Berlin (2014)

    Book  Google Scholar 

  10. Candau, N.: Compréhension des mécanismes de cristallisation sous tension des élastomères en conditions quasi-statiques et dynamiques. Ph.D. thesis (2014)

  11. Chenal, J.-M., Gauthier, C., Chazeau, L., Guy, L., Bomal, Y.: Parameters governing strain induced crystallization in filled natural rubber. Polymer 48(23), 6893–6901 (2007). https://doi.org/10.1016/j.polymer.2007.09.023. ISSN 00323861

    Article  Google Scholar 

  12. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  Google Scholar 

  13. Doghri, I.: Mechanics of Deformable Solids: Linear, Nonlinear, Analytical and Computational Aspects. Springer, Berlin (2013)

    MATH  Google Scholar 

  14. Doi, M.: Introduction to Polymer Physics. Oxford University Press, Oxford (1996)

    Google Scholar 

  15. Durin, A., Boyard, N., Bailleul, J.-L., Billon, N., Chenot, J.-L., Haudin, J.-M.: Semianalytical models to predict the crystallization kinetics of thermoplastic fibrous composites. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.44508

    Article  Google Scholar 

  16. Edwards, S.F., Vilgis, T.A.: The tube model theory of rubber elasticity. Rep. Prog. Phys. 51(2), 243 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  17. Flory, P.J.: Thermodynamics of crystallisation in high polymers. 1. Crystallization inducedby streching. J. Chem. Phys. 15(6), 397–408 (1947)

    Article  ADS  Google Scholar 

  18. Flory, P.J.: Thermodynamic relations for hight elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  19. Freund, M., Ihlemann, J.: Generalization of one-dimensional material models for the finite element method. ZAMM J. Appl. Math. Mech. 90(5), 399–417 (2010)

    Article  MathSciNet  Google Scholar 

  20. Freund, M., Lorenz, H., Juhre, D., Ihlemann, J., Klüppel, M.: Finite element implementation of a microstructure-based model for filled elastomers. Int. J. Plast. 27, 902–919 (2011)

    Article  Google Scholar 

  21. Gaylord, R.J., Lohse, D.J.: Morphological changes during oriented polymer crystallization. Polym. Eng. Sci. 16(3), 163–167 (1976)

    Article  Google Scholar 

  22. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  23. Guilie, J., Le, T.-N., Le Tallec, P.: Micro-sphere model for strain-induced crystallisation and three-dimensional applications. J. Mech. Phys. Solids 81, 58–74 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002)

    Book  Google Scholar 

  25. Heinrich, G., Kaliske, M.: Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity. Comput. Theor. Polym. Sci. 7, 227–241 (1997)

    Article  Google Scholar 

  26. Huneau, B.: Strain-induced crystallization of natural rubber: a review of X-ray diffraction investigations. Rubber Chem. Technol. 84(3), 425–452 (2011). https://doi.org/10.5254/1.3601131

    Article  Google Scholar 

  27. Ihlemann, J.: Kontinuumsmechanische Nachbildung hochbelasteter technischer Gummiwerkstoffe. Dissertation, Universität Hannover (2002)

  28. Kaliske, M., Heinrich, G.: An extended tube-model for rubber elasticity: statistical–mechanical theory and finite element implementation. Rubber Chem. Technol. 72(4), 602–632 (1999)

    Article  Google Scholar 

  29. Katz, J.R.: Röntgenspektrogramme von Kautschuk bei verschiedenen Dehnungsgraden. Eine neue Untersuchungsmethode für Kautschuk und seine Dehnbarkeit. Chem. Ztg 49, 353 (1925)

    Google Scholar 

  30. Kochenderfer, M.J., Wheeler, T.A.: Algorithms for Optimization. The MIT Press, MIT Press (2019). ISBN 9780262039420

    MATH  Google Scholar 

  31. Le Cam, J.-B.: Energy storage due to strain-induced crystallization in natural rubber: the physical origin of the mechanical hysteresis. Polymer 127, 166–173 (2017). https://doi.org/10.1016/j.polymer.2017.08.059. ISSN 00323861

    Article  Google Scholar 

  32. Le Gac, P.-Y., Albouy, P.-A., Petermann, D.: Strain-induced crystallization in an unfilled polychloroprene rubber: kinetics and mechanical cycling. Polymer 142, 209–217 (2018)

    Article  Google Scholar 

  33. Lion, A.: Thermomechanik von Elastomeren. Berichte des Instituts für Mechanik der Universitaet Kassel (Bericht 1/2000), (2000). ISBN 3-89792-023-9

  34. Lion, A., Johlitz, M.: A thermodynamic approach to model the caloric properties of semicrystalline polymers. Contin. Mech. Thermodyn. 28(3), 799–819 (2015). https://doi.org/10.1007/s00161-015-0415-8. ISSN 09351175

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Lion, A., Diercks, N., Caillard, J.: On the directional approach in constitutive modelling: a general thermomechanical framework and exact solutions for Mooney–Rivlin type elasticity in each direction. Int. J. Solids Struct. 50(14–15), 2518–2526 (2013). https://doi.org/10.1016/j.ijsolstr.2013.04.002. ISSN 00207683

    Article  Google Scholar 

  36. Long, J.D., Singer, W.E., Davey, W.P.: Fibering of rubber. Time lag and its relation to rubber structure. Rubber Chem. Technol. 7(3), 505–515 (1934). https://doi.org/10.5254/1.3548020

    Article  Google Scholar 

  37. Loos, K., Johlitz, M., Lion, A., Palgen, L., Calipel, J.: New ideas to represent strain induced crystallisation of elastomers. In: Constitutive Models for Rubber X (2017)

  38. Luch, D., Yeh, G.S.Y.: Morphology of strain-induced crystallization of natural rubber. Part II. X-ray studies on cross-linked vulcanizates. J. Macromol. Sci. Part B Phys. 7(1), 121–155 (1973)

    Article  ADS  Google Scholar 

  39. Marchal, J.: Cristallisation des caoutchoucs chargés et non chargés sous contrainte: Effet sur les chaînes amorphes. Ph.D. thesis, Université Paris XI Orsay (2006)

  40. Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubberlike materials. Rubber Chem. Technol. 79, 835–858 (2006)

    Article  Google Scholar 

  41. Marzocca, A.J., Cerveny, S., Raimondo, R.B.: Analysis of the variation of molecular parameters of NR during vulcanization in the frame of the conformational tube model. J. Appl. Polym. Sci. 66(6), 1085–1092 (1997)

    Article  Google Scholar 

  42. Menczel, J., Jaffe, M.: How did we find the rigid amorphous phase? J. Therm. Anal. Calorim. 89(2), 357–362 (2007). https://doi.org/10.1007/s10973-006-8292-9. ISSN 1572-8943

    Article  Google Scholar 

  43. Menczel, J., Wunderlich, B.: Phase transitions in mesophase macromolecules. I. Novel behavior in the vitrification of poly (ethylene terephthalate-co-p-oxybenzoate). J. Polym. Sci. Polym. Phys. Ed. 18(6), 1433–1438 (1980)

    Article  ADS  Google Scholar 

  44. Miehe, C.: Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation. Comput. Methods Appl. Mech. Eng. 120(3–4), 243–269 (1995). https://doi.org/10.1016/0045-7825(94)00057-T. ISSN 00457825

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Miehe, C.: A micro-macro approach to rubber-like materials? Part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52(11), 2617–2660 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  46. Mitchell, G.R.: A wide-angle X-ray study of the development of molecular orientation in crosslinked natural rubber. Polymer 25(11), 1562–1572 (1984). https://doi.org/10.1016/0032-3861(84)90148-4. ISSN 00323861

    Article  Google Scholar 

  47. Müller, I.: Thermodynamik. Bertelsmann Universitaetsverlag Duesseldorf, Die Grundlagen der Materialtheorie (1973)

  48. Müller, I.: Grundzuege der Thermodynamik: mit historischen Anmerkungen. Springer, Berlin (2013)

    Book  Google Scholar 

  49. Nateghi, A., Dal, H., Keip, M.-A.A., Miehe, C.: An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers. Contin. Mech. Thermodyn. 30(3), 485–507 (2018). https://doi.org/10.1007/s00161-017-0612-8. ISSN 09351175

    Article  MathSciNet  MATH  Google Scholar 

  50. Rault, J., Marchal, J., Judeinstein, P., Albouy, P.-A.: Chain orientation in natural rubber, Part II: 2H-NMR study. Eur. Phys. J. E 21(3), 243–261 (2006). https://doi.org/10.1140/epje/i2006-10064-6. ISSN 12928941

    Article  Google Scholar 

  51. Rivlin, R.S.: Large elastic deformation of isotropic materials IV: further developments of the general theory. Philos. Trans. R. Soc. Lond. A A241, 379–397 (1948)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Rublon, P.: Etude expérimentale multi-échelle de la propagation de fissure de fatigue dans le caoutchouc naturel, p. 244 (2013)

  53. Shampine, L.F., Gladwell, I., Shampine, L., Thompson, S.: Solving ODEs with MATLAB. Cambridge University Press (2003). ISBN 9780521530941. https://books.google.de/books?id=P4-9gcpqQ_AC

  54. Shutov, A.V., Landgraf, R., Ihlemann, J.: An explicit solution for implicit time stepping in multiplicative finite strain viscoelasticity. Comput. Methods Appl. Mech. Eng. 265(2013), 213–225 (2013). https://doi.org/10.1016/j.cma.2013.07.004. ISSN 00457825

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Stommel, M., Stojek, M., Korte, W.: FEM zur Berechnung von Kunststoff-und Elastomerbauteilen. Carl Hanser Verlag GmbH Co KG, Munich (2011)

    Book  Google Scholar 

  56. Thien-Nga, L., Guilie, J., Le Tallec, P.: Thermodynamic model for strain-induced crystallisation in rubber. In: European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Austria, pp. 10–14 (2012)

  57. Toki, S.: The effect of strain-induced crystallization (SIC) on the physical properties of natural rubber (NR). In: Chemistry, Manufacture and Applications of Natural Rubber, pp. 135–167. Elsevier (2014)

  58. Toki, S., Sics, I., Hsiao, B.S., Tosaka, M., Poompradub, S., Ikeda, Y., Kohjiya, S.: Probing the nature of strain-induced crystallization in polyisoprene rubber by combined thermomechanical and in situ X-ray diffraction techniques. Macromolecules 38(16), 7064–7073 (2005)

    Article  ADS  Google Scholar 

  59. Tosaka, M., Kohjiya, S., Murakami, S., Poompradub, S., Ikeda, Y., Toki, S., Sics, I., Hsiao, B.S.: Effect of network-chain length on strain-induced crystallization of NR and IR vulcanizates. Rubber Chem. Technol. 77(4), 711–723 (2004). https://doi.org/10.5254/1.3547846

    Article  Google Scholar 

  60. Tosaka, M., Senoo, K., Sato, K., Noda, M., Ohta, N.: Detection of fast and slow crystallization processes in instantaneously-strained samples of cis-1,4-polyisoprene. Polymer 53(3), 864–872 (2012)

    Article  Google Scholar 

  61. Trabelsi, S., Albouy, P.-A., Rault, J.: Crystallization and melting processes in vulcanized stretched natural rubber. Macromolecules 36(20), 7624–7639 (2003). https://doi.org/10.1021/ma030224c. ISSN 00249297

    Article  ADS  Google Scholar 

  62. Treloar, L.R.G.: The elasticity of a network of long-chain molecules. I. Trans. Faraday Soc. 39, 36–41 (1943)

    Article  Google Scholar 

  63. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics. Springer, Berlin (1992)

    Book  Google Scholar 

  64. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77(14), 3701–3707 (1955)

    Article  Google Scholar 

  65. Wunderlich, B.: Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog. Polym. Sci. 28(3), 383–450 (2003)

    Article  Google Scholar 

  66. Yeh, G.S.Y., Hong, K.Z.: Strain-induced crystallization, part III: theory. Polym. Eng. Sci. 19(6), 395–400 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klara Loos.

Additional information

Communicated by Johlitz, Laiarinandrasana and Marco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loos, K., Aydogdu, A.B., Lion, A. et al. Strain-induced crystallisation in natural rubber: a thermodynamically consistent model of the material behaviour using a multiphase approach. Continuum Mech. Thermodyn. 32, 501–526 (2020). https://doi.org/10.1007/s00161-019-00859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00859-y

Keywords

Navigation