Skip to main content
Log in

Effect of surface stress and surface mass on elastic vibrations of nanoparticles

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The elastic vibrations of nanoparticles, in the present work, have been studied theoretically by taking into account the size-dependent elasticity due to the surface effect. Surface elasticity has been resorted to where, in addition to the effect of surface stress, the effect of surface mass has also been taken into account in the model. The torsional and spherical modes for the free vibration have been obtained. Numerical calculations have been conducted, and the results have shown that both the surface stress and the surface mass affect significantly the eigenfrequencies of nanospheres. With those surface effects, the eigenfrequencies are no longer proportional to the radius inverse. Under appropriate circumstances, the surface effects may render the lowest eigenfrequency amount to the second lowest by classical elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huxter V.M., Lee A., Lo S.S., Scholes G.D.: CdSe nanoparticle elasticity and surface energy. Nano Lett. 9, 405–409 (2009)

    Article  Google Scholar 

  2. Ovsyuk N.N., Novikov V.N.: Influence of a glass matrix on acoustic phonons confined in microcrystals. Phys. Rev. B. 53, 3113–31138 (1996)

    Article  Google Scholar 

  3. Tanaka A., Onari S., Arai T.: Low-frequency Raman scattering from CdS microcrystals embedded in a germanium dioxide glass matrix. Phys. Rev. B. 47, 1237–1243 (1993)

    Article  Google Scholar 

  4. Yadav H.K., Gupta V., Sreenivas K., Singh S.P., Sundarakannan B., Katiyar R.S.: Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles. Phys. Rev. Lett. 97, 085502 (2006)

    Article  Google Scholar 

  5. Dieguez A., Romano-Rodriguez A., Morante J.R., Barsan N., Weimar U., Gopel W.: The complete Raman spectrum of nanometric SnO2 particles. Appl. Phys. Lett. 71, 1957–1959 (1997)

    Article  Google Scholar 

  6. Cerullo G., De Silvestri S., Banin U.: Size-dependent dynamics of coherent acoustic phonons in nanocrystal quantum dots. Phys. Rev. B 60, 1928–1932 (1999)

    Article  Google Scholar 

  7. Guillon C., Langot P., Del Fatti N., Vallee F., Kirakosyan A.S., Shahbazyan T.V., Cardinal T., Treguer M.: Coherent acoustic vibration of metal nanoshells. Nano Lett. 7, 138–142 (2007)

    Article  Google Scholar 

  8. Tamura A., Higeta K., Ichinokawa T.: Lattice vibrations and specific heat of a small particle. J. Phys. C: Solid State Phys. 15, 4975–4991 (1982)

    Article  Google Scholar 

  9. Saviot L., Champagnon B., Duval E., Kudriavtsev I.A., Ekimov A.I.: Size dependence of acoustic and optical vibrational modes of CdSe nanocrystals in glasses. J. Non cryst. Solids 197, 238–246 (1997)

    Article  Google Scholar 

  10. Hernandez-Rosas J., Picquart M., Haro-Poniatowski E., Kanehisa M., Jouanne M., Morhange J.F.: Elastic vibrations of spheroidal nanometric particles. J. Phys. Condens. Matt. 15, 7481–7487 (2003)

    Article  Google Scholar 

  11. Saviot L., Murray D.B.: Acoustic vibrations of anisotropic nanoparticles. Phys. Rev. B 79, 214101 (2009)

    Article  Google Scholar 

  12. Hasheminejad S.M., Mirzaei Y.: Exact 3D elasticity solution for free vibrations of an eccentric hollow sphere. J. Sound Vib. 330, 229–244 (2011)

    Article  Google Scholar 

  13. Lamb H.: On the vibrations of an elastic spherical. Proc. Lond. Math. Soc. S1(S13), 189–212 (1881)

    Article  MathSciNet  Google Scholar 

  14. Combe N., Chassaing P.M., Demangeot F.: Surface effects in zinc oxide nanoparticles. Phys. Rev. B 79, 045408 (2009)

    Article  Google Scholar 

  15. Wesselinowa J.M., Apostolov A.T.: Origin of the acoustic phonon frequency shifts in semiconducting nanoparticles. Phys. Lett. A 374, 4455–4457 (2010)

    Article  MATH  Google Scholar 

  16. Khoo K.H., Zayak A.T., Kwak H., Chelikowsky J.R.: First-principles study of confinement effects on the Raman spectra of Si nanocrystals. Phys. Rev. Lett. 105, 115504 (2010)

    Article  Google Scholar 

  17. Cuenot S., Fretigny C., Demoustier-Champagne S., Nysten B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004)

    Article  Google Scholar 

  18. Tan E.P.S. et al.: Crystallinity and surface effects on Young’s modulus of CuO nanowires. Appl. Phys. Lett. 90, 163112 (2007)

    Article  Google Scholar 

  19. Wolfer W.G.: Elastic properties of surfaces on nanoparticles. Acta Mater. 59, 7736–7743 (2011)

    Article  Google Scholar 

  20. Chen B. et al.: Size-dependent elasticity of nanocrystalline titania. Phys. Rev. B 79, 125406 (2009)

    Article  Google Scholar 

  21. Wampler H.P., Ivanisevic A.: Nanoindentation of gold nanoparticles functionalized with proteins. Micron 40, 444–448 (2009)

    Article  Google Scholar 

  22. Gurtin M.E., Murdoch A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  24. Sharma P., Ganti S., Bhate N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)

    Article  Google Scholar 

  25. Chen T., Chiu M.S., Weng C.N.: Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006)

    Article  Google Scholar 

  26. Wang G.F., Feng X.Q., Yu S.W.: Surface buckling of a bending microbeam due to surface elasticity. Europhys. Lett. 77, 44002 (2007)

    Article  Google Scholar 

  27. Wang G.F., Feng X.Q., Yu S.W.: Interface effects on the diffraction of plane compressional waves by a nanosized spherical inclusion. J. Appl. Phys. 102, 043533 (2007)

    Article  Google Scholar 

  28. Song F., Huang G.L., Varadan V.K.: Study of wave propagation in nanowires with surface effects by using a high-order continuum theory. Acta Mech. 209, 129–139 (2010)

    Article  MATH  Google Scholar 

  29. Yao D., Zhang G., Lo G.Q., Li B.: Impacts of size and cross-sectional shape on surface lattice constant and electron effective mass of silicon nanowires. Appl. Phys. Lett. 94, 113113 (2009)

    Article  Google Scholar 

  30. Omar M.S., Taha H.T.: Lattice dislocation in Si nanowires. Physica B 404, 5203–5206 (2009)

    Article  Google Scholar 

  31. Krylov V.V.: Surface properties of solids and surface acoustic waves: application to chemical sensors and layer characterization. Appl. Phy. A 61, 229–236 (1995)

    Article  Google Scholar 

  32. Pao Y.H., Mow C.C.: Diffractions of Elastic Waves and Dynamic Stress Concentrations. Crane Russak, New York (1973)

    Google Scholar 

  33. Shenoy V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094194 (2005)

    Google Scholar 

  34. Saviot L., Combe N., Mlayah A.: Number of observable features in the acoustic Raman spectra of nanocrystals. Phys. Rev. B 85, 075405 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan-Yun Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, GY., Liu, JP. Effect of surface stress and surface mass on elastic vibrations of nanoparticles. Acta Mech 224, 985–994 (2013). https://doi.org/10.1007/s00707-012-0803-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0803-0

Keywords

Navigation