Skip to main content
Log in

Impulsive responses of functionally graded material bars due to collision

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We investigated the ability of functionally graded materials (FGMs) to absorb impact energy by mathematically analyzing the impulsive responses of functionally graded (FG) bars colliding with a homogeneous bar on the basis of Laplace transformation and calculated by using numerical transformation and its inversion. Young’s modulus in the FG bar was assumed to be proportional to the square of its density, which was similar to foam materials. Results showed that maximum impact loads were not strongly dependent on the distribution of material property in the FG bar. In the FG bar with increasing modulus from the impact end to the fixed end, much larger compressive stress and even large tensile stress occurred near the fixed end compared with the ones in the homogeneous bar. In the FG bar with decreasing modulus from the impact end, the compressive stress was approximately the same as the one in the homogeneous bar, and the history of the stress varied regularly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanigawa Y.: Some basic thermoelastic problems for nonhomogeneous structural materials. Appl. Mech. Rev. 48, 287–300 (1995)

    Article  Google Scholar 

  2. Noda N.: Thermal stresses in functionally graded material. J. Therm. Stress. 22, 377–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Kieback B., Neubrand A., Riedel H.: Processing techniques for functionally graded materials. Mater. Sci. Eng. A. 362, 81–105 (2003)

    Article  Google Scholar 

  4. El-Hadek M.A., Tippur H.V.: Dynamic fracture parameters and constraint effects in functionally graded syntactic epoxy foams. Int. J. Solids Struct. 40, 1885–1906 (2003)

    Article  Google Scholar 

  5. Kishore., Shankar R., Sankaran A.: Gradient syntactic foams: tensile strength, modulus and fractographic features. Mater. Sci. Eng., A. 412, 153–158 (2005)

    Article  Google Scholar 

  6. Gupta N., Ricci W.: Comparison of compressive properties of layered syntactic foams having gradient in microballoon volume fraction and wall thickness. Mater. Sci. Eng. A. 427, 331–342 (2006)

    Article  Google Scholar 

  7. Gupta N.: A functionally graded syntactic foam material for high energy absorption under compression. Mater. Lett. 61, 979–982 (2007)

    Article  Google Scholar 

  8. Gupta N., Gupta S.K., Mueller B.J.: Analysis of a functionally graded particulate composite under flexural loading conditions. Mater. Sci. Eng. A. 485, 439–447 (2008)

    Article  Google Scholar 

  9. Caeti R., Gupta N., Porfiri M.: Processing and compressive response of functionally graded composites. Mater. Lett. 63, 1964–1967 (2009)

    Article  Google Scholar 

  10. Parameswaran V., Shukla A.: Processing and characterization of a model functionally gradient material. J. Mater. Sci. 35, 21–29 (2000)

    Article  Google Scholar 

  11. Rohatgi P.K., Matsunaga T., Gupta N.: Compressive and ultrasonic properties of polyester/fly ash composites. J. Mater. Sci. 44, 1485–1493 (2009)

    Article  Google Scholar 

  12. Adachi T., Higuchi M.: Development of integral molding of functionally-graded syntactic foams. In: Irschik, H., Krommer, M., Belyaev, A.K. (eds) Advanced Dynamic and Model-Based Control of Structures and Machines, pp. 1–9. Springer, Heidelberg (2012)

  13. Higuchi, M., Adachi, T., Yokochi, Y., Fujimoto, K.: Controlling of distribution of mechanical properties in functionally-graded syntactic foams for impact energy absorption. Mater. Sci. Forum 706–709, 729–734 (2012)

  14. Adachi, T., Higuchi, M.: Fabrication of bulk functionally-graded syntactic foams for impact energy absorption. Mater. Sci. Forum 706–709, 711–716 (2012)

    Google Scholar 

  15. Higuchi M., Yokochi Y., Adachi T.: Evaluation on integrated molding of functionally-graded epoxy foams. Trans. Jpn. Soc. Mech. Eng. A. 78, 660–664 (2012)

    Article  Google Scholar 

  16. Higuchi, M., Adachi, T., Yoshioka T., Yokochi, Y.: Evaluation on distributions of mechanical properties in functionally graded syntactic foam. Trans. Jpn. Soc. Mech. Eng. A. 78, 890–901 (2012)

    Google Scholar 

  17. Cui L., Kiernan S., Gilchrist M.D.: Designing the energy absorption capacity of functionally graded foam materials. Mater. Sci. Eng. A. 507, 215–225 (2009)

    Article  Google Scholar 

  18. Chiu T.C., Erdogan F.: One-dimensional wave propagation in a functionally graded elastic medium. J. Sound Vib. 222, 453–487 (1999)

    Article  Google Scholar 

  19. Bruck H.A.: One-dimensional model for designing functionally graded materials to manage stress waves. Int. J. Solids Struct. 37, 6383–6395 (2000)

    Article  MATH  Google Scholar 

  20. Abu-Alshaikh I., Kokluce B.: One-dimensional transient dynamic response in functionally graded layered media. J. Eng. Math. 54, 17–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kiernan S., Cui L., Gilchrist M.D.: Propagation of a stress wave through a virtual functionally graded foam. Int. J. Non-Linear Mech. 44, 456–468 (2009)

    Article  Google Scholar 

  22. Han X., Liu G.R., Lam K.Y., Ohyoshi T.: A quadratic layer element for analyzing stress waves in FGMs and its application in material characterization. J. Sound Vib. 236, 307–321 (2000)

    Article  Google Scholar 

  23. Santare M.H., Thamburaj , Gazonas G.A.: The use of graded finite elements in the study of elastic wave propagation in continuously nonhomogeneous materials. Int. J. Solids Struct. 40, 5621–5634 (2003)

    Article  MATH  Google Scholar 

  24. Samadhiya R., Mukherjee A., Schmauder S.: Characterization of discretely graded materials using acoustic wave propagation. Comput. Mater. Sci. 37, 20–28 (2006)

    Article  Google Scholar 

  25. Berezovski A., Engelbrecht J., Maugin G.A.: Numerical simulation of two-dimensional wave propagation in functionally graded materials. Eur. J. Mech. A/Solids. 22, 257–265 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu G.R., Han X., Xu Y.G., Lam K.Y.: Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network. Compos. Sci. Technol. 61, 1401–1411 (2001)

    Article  Google Scholar 

  27. Adachi T., Yoshigaki N., Higuchi M.: Analysis of longitudinal impact problem for functionally graded materials. Trans. Jpn. Soc. Mech. Eng. A. 79, 502–510 (2012)

    Article  Google Scholar 

  28. Krings W., Waller H.: Contribution to the numerical treatment of partial differential equations with the Laplace transformation—an application of the algorithm of the fast Fourier transformation. Int. J. Numer. Methods Eng. 14, 1183–1196 (1979)

    Article  MATH  Google Scholar 

  29. Adachi T., Ujihashi S., Matsumoto H.: Impulsive responses of a circular cylindrical shell subjected to waterhammer waves. J. Press. Vessel Technol. 113, 517–523 (1991)

    Article  Google Scholar 

  30. Adachi T., Sakanoue K., Ujihashi S., Matsumoto H.: Damage evaluation of CFRP laminates due to iterative impact. Trans. Jpn. Soc. Mech. Eng. A. 57, 569–575 (1991)

    Article  Google Scholar 

  31. Graff K.: Wave Motion in Elastic Solids. Dover, New York (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadaharu Adachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, T., Higuchi, M. Impulsive responses of functionally graded material bars due to collision. Acta Mech 224, 1061–1076 (2013). https://doi.org/10.1007/s00707-012-0788-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0788-8

Keywords

Navigation