Skip to main content
Log in

A simple and accurate Ritz formulation for free vibration of thick rectangular and skew plates with general boundary conditions

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The Ritz method is one of the most elegant and useful approximate methods for obtaining solutions for the natural frequencies and vibration modes of elastic plates. It is simple to use and also straightforward to implement. In conventional Ritz method, the geometric boundary conditions are only satisfied and hence the Ritz method is known as a method that can produce upper bound solution results for the natural frequencies of elastic plates. On the other hand, the accuracy of the Ritz method for the solution of differential equations with mixed natural boundary conditions at the boundary lines is not very satisfactory. To overcome this difficulty, this paper presents a simple and accurate Ritz formulation in which the natural boundary conditions are exactly implemented. The versatility, accuracy, and efficiency of the proposed method for free vibration analysis of thick rectangular and skew plates are tested against other solution procedures. It is revealed that the proposed method to handle the mixed natural boundary conditions is simple to use and can produce highly accurate solutions for the natural frequencies of thick rectangular and skew plates involving free edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leissa, A.W.: Vibration of Plates. NASA SP-160 (1969)

  2. Leissa A.W.: The free vibration of rectangular plates. J. Sound Vib. 31, 257–293 (1973)

    Article  MATH  Google Scholar 

  3. Mindlin R.D.: Influence of rotary inertia and shear deformation on the bending of elastic plates. ASME J. Appl. Mech. 12, 69–76 (1945)

    Google Scholar 

  4. Dawe D.L., Roufaeil O.L.: Rayleigh–Ritz vibration analysis of Mindlin plates. J. Sound Vib. 69, 345–359 (1980)

    Article  MATH  Google Scholar 

  5. Irschik H.: Membrane-type eigenmotions of Mindlin plates. Acta Mech. 55, 1–20 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Heuer R., Irschik H.: A boundary element method for eigenvalue problems of polygonal membranes and plates. Acta Mech. 66, 9–20 (1987)

    Article  MATH  Google Scholar 

  7. Irschik H., Heuer R., Ziegler F.: Dynamic analysis of polygonal Mindlin plates on two-parameter foundations using classical plate theory and an advanced BEM. Comput. Mech. 4, 293–300 (1989)

    Article  MATH  Google Scholar 

  8. Irschik H., Heuer R., Ziegler F.: Statics and dynamics of simply supported polygonal Reissner-Mindlin plates by analogy. Arch. Appl. Mech. 70, 231–244 (2000)

    Article  MATH  Google Scholar 

  9. Liew K.M., Xiang Y., Kitipornchai S.: Research on thick plate vibration: a literature survey. J. Sound Vib. 180, 163–176 (1995)

    Article  MATH  Google Scholar 

  10. Gorman D.J., Ding W.: Accurate free vibration analysis of completely free rectangular Mindlin plates using the super position method. J. Sound Vib. 189, 341–353 (1996)

    Article  Google Scholar 

  11. Gorman D.J.: Free vibration analysis of Mindlin plates with uniform elastic edge support by the super position method. J. Sound Vib. 207, 335–350 (1997)

    Article  Google Scholar 

  12. Matsunaga H.: Vibration and stability of thick plates on elastic foundations. J. Eng. Mech. 126, 27–34 (2000)

    Article  Google Scholar 

  13. Saha K.N., Kar R.C., Datta P.K.: Free vibration analysis of rectangular Mindlin plates with elastic restraints uniformly distributed along the edges. J. Sound Vib. 192, 885–904 (1996)

    Article  MATH  Google Scholar 

  14. Xiang Y., Kitipornchai S., Liew K.M., Lim M.K.: Vibration of stiffened skew Mindlin plates. Acta Mech. 112, 11–28 (1995)

    Article  MATH  Google Scholar 

  15. Wang S.: A unified Timoshenko beam B-spline Rayleigh–Ritz method for vibration and buckling analysis of thick and thin beams and plates. Int. J. Numer. Methods Eng. 40, 473–491 (1997)

    Article  MATH  Google Scholar 

  16. Cheung Y.K., Zhou D: Vibrations of moderately thick rectangular plates in terms of a set of static Timoshenko beam functions. Comput. Struct. 78, 757–768 (2000)

    Article  Google Scholar 

  17. Zhou D.: Vibrations of Mindlin rectangular plates with elastically restrained edges using Timoshenko beam functions with the Rayleigh–Ritz method. Int. J. Solids Struct. 38, 5565–5580 (2001)

    Article  MATH  Google Scholar 

  18. Al Janabi, B.S., Hinton, E., Vuksanovic, D.J.: Free vibrations of Mindlin plates using the finite element method: Part 1. Square plates with various edge conditions. Eng. Comput. 6,–29096 (1989)

    Google Scholar 

  19. Dawe D.J.: Finite strip models for vibration of Mindlin plates. J. Sound Vib. 59, 441–452 (1987)

    Article  Google Scholar 

  20. Cheung Y.K., Chakrabarti S.: Free vibration of thick layered rectangular plates by a finite layer method. J. Sound Vib. 21, 277–284 (1972)

    Article  MATH  Google Scholar 

  21. Mikami T., Yoshimura J.: Application of the collocation method to vibration analysis of rectangular Mindlin plates. Comput. Struct. 18, 425–431 (1984)

    Article  MATH  Google Scholar 

  22. Hashemi S.H., Arsanjani M.: Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. Int. J. Solids Struct. 42, 819–853 (2005)

    Article  MATH  Google Scholar 

  23. Akhavan H., Hosseini Hashemi Sh., Rokni Damavandi Taher H., Alibeigloo A., Vahabi Sh.: Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: frequency analysis. Comput. Mater. Sci. 44, 951–961 (2009)

    Article  Google Scholar 

  24. Xiang Y., Lai S.K., Zhou L.: DSC-element method for free vibration analysis of rectangular Mindlin plates. Int. J. Mech. Sci. 52, 548–560 (2010)

    Article  Google Scholar 

  25. Bassily S.F., Dickinson S.M.: On the use of beam functions for problems of plates involving free edges. ASME J. Appl. Mech. 42, 858–864 (1975)

    Article  MATH  Google Scholar 

  26. Bhat R.B.: Natural frequencies of rectangular plates using characteristic orthogonal polynomials in the Rayleigh–Ritz method. J. Sound Vib. 102, 493–499 (1985)

    Article  Google Scholar 

  27. Dickinson S.M., Di Blasio A: On the use of orthogonal polynomials in the Rayleigh–Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates. J. Sound Vib. 108, 51–62 (1986)

    Article  MATH  Google Scholar 

  28. Bhat R.B.: Flexural vibration of polygonal plates using characteristic orthogonal polynomials in two variables. J. Sound Vib. 114, 65–71 (1987)

    Article  Google Scholar 

  29. Liew K.M., Lam K.Y.: Application of two-dimensional orthogonal plate function to flexural vibration of skew plates. J. Sound Vib. 139, 241–252 (1990)

    Article  Google Scholar 

  30. Singh B., Chakraverty S.: Flexural vibration of skew plates using boundary characteristic orthogonal polynomials in two variables. J. Sound Vib. 173, 157–178 (1994)

    Article  MATH  Google Scholar 

  31. Oosterhout G.M., VanDer Hoogt P.J.M., Spiering R.M.E.J.: Accurate calculation methods for natural frequencies of plates with special attention to the higher modes. J. Sound Vib. 183, 33–47 (1995)

    Article  MATH  Google Scholar 

  32. Huang C.S., McGee O.G., Leissa A.W., Kim J.W.: Accurate vibration analysis of simply supported rhombic plates by considering stress singularities. ASME J. Vib. Acoust. 117, 245–251 (1995)

    Article  Google Scholar 

  33. Liew K.M., Lam K.M.: Authors’ reply: vibration of skew plates by the Rayleigh–Ritz method. J. Sound Vib. 153, 535–536 (1992)

    Article  Google Scholar 

  34. Liew K.M., Xiang Y., Kitipornchai S., Wang C.M.: Vibration of thick skew plates by a variational approach. J. Sound Vib. 168, 39–69 (1993)

    Article  MATH  Google Scholar 

  35. Liew K.M., Xiang Y., Kitipornchai S.: Transverse vibration of thick rectangular plates-I. Comprehensive sets of boundary conditions. Comput. Struct. 49, 1–29 (1993)

    Article  Google Scholar 

  36. Lim C.W., Liew K.M., Kitipornchai S.: Numerical aspects for free vibration of thick plates, part I: formulation and verification. Comput. Methods Appl. Mech. Eng. 156, 15–29 (1998)

    Article  MATH  Google Scholar 

  37. Eftekhari, S.A., Jafari, A.A.: A novel and accurate Ritz formulation for free vibration of rectangular and skew plates. ASME J. Appl. Mech. Accepted for Publication. doi:10.1115/1.4006804

  38. Rao S.S.: Vibration of Continuous Systems. Wiley, Hoboken (2007)

    Google Scholar 

  39. Bardell N.S.: The free vibration of skew plates using the hierarchical finite element method. Comput. Struct. 45, 841–847 (1992)

    Article  Google Scholar 

  40. Woo K.S., Hong C.H., Basu P.K., Seo C.G.: Free vibration of skew Mindlin plates by p-version of FEM. J. Sound. Vib. 268, 637–656 (2003)

    Article  Google Scholar 

  41. Singh B., Saxena V.: Transverse vibration of skew plates with variable thickness. J. Sound Vib. 206, 1–13 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Eftekhari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eftekhari, S.A., Jafari, A.A. A simple and accurate Ritz formulation for free vibration of thick rectangular and skew plates with general boundary conditions. Acta Mech 224, 193–209 (2013). https://doi.org/10.1007/s00707-012-0737-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0737-6

Keywords

Navigation