Skip to main content
Log in

Approximate modeling of wave processes in elastoplastic solids

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The single- and multi-wave processes in the elastoplastic solids are modeled based on the approximate approach proposed. We consider one- and two-dimensional problems on propagation of the longitudinal waves arising at normal impact on the boundary of an isotropic half-space, the problem of shock-wave reflection from a free surface of a plate and the problems on two-dimensional fracture of a plate, produced by a cylindrical impactor. The proposed approach allows one to simplify considerably the analysis of these and others similar problems taking into account the elastoplastic behavior of the solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallace D.C.: Irreversible thermodynamics of flow in solids. Phys. Rev. B22, 1477–1486 (1980)

    Google Scholar 

  2. Oikawa M., Yajima N.: Generalization of the reductive perturbation method to multi-wave systems. Suppl. Progr. Theor. Phys. 55, 36–51 (1974)

    Article  Google Scholar 

  3. Leibovich, S., Seebass, A.R.: Examples of dissipative and dispersive systems leading to the Burgers and the Korteweg-de Vries equations. In: Leibovich, S., Seebass, A.R. (eds.) Nonlinear Waves, pp. 103–130. Cornel University Press, Ithaca (1974)

  4. Tatsumi T., Tokunaga H.: One dimensional shock turbulence in a compressible fluid. J. Fluid Mech. 65, 581–601 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nayfeh A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  6. Engelbrecht Y.K., Nigul U.K.: Non-linear Waves of Deformation. Nauka, Moscow (1981)

    Google Scholar 

  7. Zabolotskaya, E.A.: Nonlinear propagation of sound beam in solid. In: Proceedings of IUPAP-IUTAM Symposium on Nonlinear Acoustics. Novosibirsk, USSR, part 1, pp. 355–359 (1987)

  8. Dai H.-H., Huo Y.: Asymptotically approximate model equations for nonlinear dispersive waves in incompressible elastic rods. Acta Mech. 157, 97–112 (2002)

    Article  MATH  Google Scholar 

  9. Kovriguine D.A., Potapov A.I.: Nonlinear oscillations in a thin ring—I. Three-wave resonant interactions. Acta Mech. 126, 189–200 (1998)

    Article  MATH  Google Scholar 

  10. Petviashvili V.I., Pokhotelov O.A.: Solitary Waves in Plasmas and in the Atmosphere. Gordon and Breach, London (1992)

    MATH  Google Scholar 

  11. Myagkov N.N.: Nonlinear waves in shock-loaded condensed matter. J. Phys. D Appl. Phys. 27, 1678–1686 (1994)

    Article  Google Scholar 

  12. Myagkov N.N.: Asymptotic modelling of nonlinear wave processes in shock-loaded elastic-plastic solids. J. Appl. Mech. Techn. Phys. 44, 249–254 (2003)

    Article  MathSciNet  Google Scholar 

  13. Zel’dovich Y.B., Raizer Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic, New York (1966)

    Google Scholar 

  14. Orlenko, L.P. (ed.): Physics of Explosion, vol. 2. Fizmatlit, Moscow (2004) (in Russian)

  15. Rudenko O.V., Soluyan S.I.: Theoretical Foundations of Nonlinear Acoustics. Plenum, New York (1977)

    MATH  Google Scholar 

  16. Hill R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  17. Landau L.D., Lifshits E.M.: Course of Theoretical Physics, Fluid Mechanics, vol. 6. Pergamon Press, New York (1987)

    Google Scholar 

  18. Gilman J.J.: Dislocation dynamics and the response of materials to impact. Appl. Mech. Rev. 21, 767 (1968)

    Google Scholar 

  19. Fowles R., Williams R.F.: Plane stress wave propagation in solids. J. Appl. Phys. 41, 360–363 (1970)

    Article  Google Scholar 

  20. Kanel G.I., Razorenov S.V., Fortov V.E.: Shock-Wave Phenomena and the Properties of Condensed Matter. Springer, New York (2004)

    Google Scholar 

  21. Morris, C.E. (ed.): Los Alamos Shock Wave Profile Data. University of California Press, Berkeley (1982)

    Google Scholar 

  22. Kanel G.I., Shcherban V.V.: Plastic deformation and cleavage rupture of armco iron in a shock wave. Phys. Combust. Explos. 16, 439–446 (1980)

    Article  Google Scholar 

  23. Morris, C.E., Winkler, M.A., Mitchell, A.C.: Ti-6Al-4V alloy wave profile measurements in the shadow region. In: Schmidt, S.C., Holms N.C. (eds.) Shock Waves in Condensed Matter-1987, pp. 265–268. Elsevier, Amsterdam (1988)

  24. Gray, G.T., Morris, C.E.: Influence of peak pressure on the substructure evolution and shock wave profiles of Ti-6Al-4V. In: Sixth World Conference on Titanium. pp. 269–274. France (1988)

  25. Seaman L., Curran D.R., Shockey DJ.: Computational models for ductile and brittle fracture. Appl. Phys. 47, 4814–4826 (1976)

    Google Scholar 

  26. Morozov, N., Petrov, Y., Utkin, A.: Doklady Akademii nauk SSSR, 313, 276 (1990) (in Russian)

  27. Panasyuk, V.V. (ed.): Fracture Mechanics and Materials Strength: A Reference Book. Kiev, Naukova Dumka (1988) (in Russian)

  28. Vishnyakov A.N.: Experimental ignition time determination for a particle formed during metal disintegration in oxygen. Combust. Explos. Shock Waves 27, 522–527 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Myagkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myagkov, N.N. Approximate modeling of wave processes in elastoplastic solids. Acta Mech 223, 2379–2392 (2012). https://doi.org/10.1007/s00707-012-0715-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0715-z

Keywords

Navigation