Skip to main content
Log in

An investigation of the buckling behavior of composite elliptical cylindrical shells with piezoelectric layers under axial compression

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The paper is focused on the elastic buckling behavior of piezocomposite elliptical cylindrical shell finite element formulation. The formulation is based on the shear deformation theory, and the serendipity quadrilateral eight-node element is used to study the elastic behavior of elliptical cylindrical shells. The strain-displacement relations are accurately accounted for in the formulation. The contributions of work done by the applied load are also incorporated. A constant gain displacement control algorithm coupling the direct and inverse piezoelectric effect is applied to provide active control of composite non-circular shells in a self-monitoring and self-controlling system. The governing equations obtained using the principle of minimum potential energy are solved through an eigenvalue approach. The influences of elliptical cross-sectional parameter and displacement feedback gain (G d ) values on the critical buckling loads of elliptical cylindrical shells are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marguerre, K.: Stability of cylindrical shells of variable curvature, NACA TM-1302 (1951)

  2. Kempner, J., Chen, Y.N.: Large deflections of an axially compressed oval cylindrical shell. In: Proceedings of the 11th International Congress on Applied Mechanics, Springer, Berlin, pp. 299–306 (1964)

  3. Kempner, J., Chen, Y.N.: Buckling and post buckling of an axially compressed oval cylindrical shell. In: Symposium on the Theory of Shells to Honor Lloyd, H. Donnell, McCuthan Publishers Co., pp. 141–183 (1967)

  4. Feinstein G., Chen Y.N., Kempner J.: Buckling of clamped oval cylindrical shells under axial loads. AIAA J. 9, 1733–1738 (1971)

    Article  Google Scholar 

  5. Feinstein G., Erickson B., Kempner J.: Stability of oval cylindrical shells. Exp. Mech. 11, 514–520 (1971)

    Article  Google Scholar 

  6. Hutchinson J.W.: Buckling and initial postbuckling behavior of oval cylindrical shells under axial compression. J. Appl. Mech. Trans. ASME 35, 66–72 (1968)

    Article  Google Scholar 

  7. Tennyson R.C., Booton M., Caswell R.D.: Buckling of imperfect elliptical cylindrical shells under axial compression. AIAA J. 9, 250–255 (1971)

    Article  Google Scholar 

  8. Sambandama C.T., Patel B.P., Gupta S.S., Munot C.S., Ganapathi M.: Buckling characteristics of cross-ply elliptical cylinders under axial compression. Compos. Struct. 62, 7–17 (2003)

    Article  Google Scholar 

  9. Gardner L.: Structural behavior of oval hollow sections. Int. J. Adv. Steel Constr. 1, 26–50 (2005)

    Google Scholar 

  10. Chan T.M., Gardner L.: Compressive resistance of hot-rolled elliptical hollow sections. Eng. Struct. 30, 522–532 (2008)

    Article  Google Scholar 

  11. Zhu, Y., Wilkinson, T.: Finite Element Analysis of Structural Steel Elliptical Hollow Sections in Compression. Research Report No. R874, Centre for Advanced Structural Engineering, The University of Sydney (2007)

  12. Kempner, J.: Some results on buckling and post buckling of cylindrical shell. In: Collected Papers on Instability of Shell Structures, NASA TND-1510, pp. 173–186 (1962)

  13. Almorth B.O., Brogan F.A., Marlowe M.B.: Collapse analysis of elliptic cones. AIAA J. 9, 32–37 (1971)

    Article  Google Scholar 

  14. Bushnell D.: Stress, buckling and vibration of prismatic shells. AIAA J. 9, 2004–2013 (1971)

    Article  Google Scholar 

  15. Chen Y.N., Kempner J.: Buckling of oval cylindrical shell under compression and asymmetric bending. AIAA J. 14, 1235–1240 (1976)

    Article  MATH  Google Scholar 

  16. Koroleva E.M.: Stability of cylindrical shells of oval cross-section in the bending stress-state. Prikl Mat Mekh. 37, 901–903 (1974)

    Google Scholar 

  17. Volpe V., Chen Y.N., Kempner J.: Buckling of orthogonally stiffened finite oval cylindrical shells under axial compression. AIAA J. 18, 571–580 (1980)

    Article  MATH  Google Scholar 

  18. Semenyuk N.P.: Stability of non-circular cylindrical shells under axial compression. Sov. Appl. Mech. 20, 813–818 (1984)

    Article  MATH  Google Scholar 

  19. Meressi S., Paden B.: Buckling control of a flexible beam using piezoelectric actuators. J. Guid. Dyn. 26, 977–980 (1993)

    Article  Google Scholar 

  20. Thomson S.P., Loughlan J.: The active buckling control of some composite column using piezoceramic actuators. Compos. Struct. 32, 59–67 (1995)

    Article  Google Scholar 

  21. De Faria A.R., De Almeida S.F.M.: Enhancement of pre-buckling behavior of composite beams with geometric imperfections using piezoelectric actuators. Compos. Part B 30, 43–50 (1999)

    Article  Google Scholar 

  22. Varelis D., Saravanos D.A.: Nonlinear coupled mechanics and initial buckling of composite plates with piezoelectric actuators and sensors. J. Smart Mater. Struct. 11, 330–336 (2002)

    Article  Google Scholar 

  23. Varelis, D., Saravanos, D.A.: Coupled finite element for the non-linear response of laminated piezoelectric composite structures. In: Adaptive Structures Conference, AIAA paper 2002-1442, 0th AIAA/ASME/AHS, Denver, Colorado, pp. 22–25 (2002)

  24. Tzou H.S., Bao Y.: Nonlinear piezothermo elasticity and multi field actuations, part 1: nonlinear anisotropic piezothermoelastic shell laminates. J. Vib. Acoust. 119, 374–381 (1997)

    Article  Google Scholar 

  25. Tzou H.S., Zhou Y.H.: Nonlinear piezothermo elasticity and multi field actuations, part 2: control of nonlinear deflection, buckling and dynamics. J. Vib. Acoust. 119, 382–389 (1997)

    Article  Google Scholar 

  26. Di Scuva M., Icardi U.: Large deflection of adaptive multilayered Timoshenko beams. Compos. Struct. 31, 49–60 (1995)

    Article  Google Scholar 

  27. Oh I.K., Han J.H., Lee I.: Thermopiezoelastic snapping of piezolaminated plates using nonlinear finite elements. AIAA J. 39, 1188–1198 (2001)

    Article  Google Scholar 

  28. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 5th edn. Butterworth-Heinema Pub. Co., Boston, vol. 2, Chap. 8 (1967)

  29. Suzuki K., Shikanai G., Leissa A.W.: Free vibrations of laminated composite thick noncircular cylindrical shell. Int. J. Solids Struct. 33, 4079–4100 (1996)

    Article  MATH  Google Scholar 

  30. Kraus H.: Thin Elastic Shells. Wiley, New York (1976)

    Google Scholar 

  31. Qatu M.S.: Accurate equations for laminated composite deep thick shells. Int. J. Solids Struct. 36, 2917–2941 (1999)

    Article  MATH  Google Scholar 

  32. Kulkarni Sudhakar A., Bajoria Kamal M.: Finite element modeling of smart plates/shells using higher order shear deformation theory. Compos. Struct. 62, 41–50 (2003)

    Article  Google Scholar 

  33. Soldatos K.P.: Non-linear analysis of transverse shear deformable laminated composite cylindrical shells part I: derivation of governing equations. ASME J. Press Vess. Tech. 114, 105–109 (1992)

    Article  Google Scholar 

  34. Soldatos K.P.: Non-linear analysis of transverse shear deformable laminated composite cylindrical shells part II: buckling of axially compressed cross-ply circular and oval cylinders. ASME J. Press Vess. Tech. 114, 110–114 (1992)

    Article  Google Scholar 

  35. Zienkiewicz O.C.: Finite Element Methods in Engineering Science. McGraw-Hill, London (1971)

    Google Scholar 

  36. Nosier A., Reddy J.N.: Vibration and stability analysis of cross-ply laminated circular cylindrical shells. J. Sound Vib. 157, 139–159 (1992)

    Article  MATH  Google Scholar 

  37. Zhang Q.M., Zhao J.: Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1518–1525 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Kazemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazemi, E., Darvizeh, M., Darvizeh, A. et al. An investigation of the buckling behavior of composite elliptical cylindrical shells with piezoelectric layers under axial compression. Acta Mech 223, 2225–2242 (2012). https://doi.org/10.1007/s00707-012-0705-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0705-1

Keywords

Navigation