Skip to main content
Log in

On the introduction of thermoplasticity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The introduction of a format for thermoplasticity is given based on the quantities that are measurable, at least principally. The important assumption is that of equal thermoelastic behaviour within all elastic ranges. For simplicity, the theory is restricted to small deformations. A simple example is given to demonstrate the results. The question of uniqueness of the thermodynamical variables is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acharya A., Shawki T.G.: The Clausius–Duhem inequality and the structure of rate-independent plasticity. Int. J. Plast. 22(2), 229–283 (1996)

    Article  Google Scholar 

  2. Bergander H., Luther M.: Zur Dissipation beim plastischen Fließen. Tech. Mech. 6(2), 58–65 (1985)

    Google Scholar 

  3. Bertram A.: An alternative approach to finite plasticity based on material isomorphisms. Int. J. Plast. 15(3), 353–374 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertram, A.: Elasticity and Plasticity of Large Deformations—An Introduction. Springer, Berlin (2005, 2008, 2012)

  5. Bever M.G., Hold D.L., Tichener A.L.: The stored energy of cold work. Prog. Mater. Sci. 17, 1–190 (1973)

    Article  Google Scholar 

  6. Böhlke T., Bertram A.: The evolution of Hooke’s law due to texture development in polycrystals. Int. J. Solids. Struct. 38(52), 9459–9470 (2001)

    Article  Google Scholar 

  7. Bridgman P.W.: The thermodynamics of plastic deformation and generalized entropy. Rev. Mod. Phys. 22(1), 56–63 (1950)

    Article  Google Scholar 

  8. Brown A.A., Casey J., Nikkel D.J.: Experiments conducted in the context of the strain-space formulation of plasticity. Int. J. Plast. 19(11), 1965–2005 (2003)

    Article  MATH  Google Scholar 

  9. Casey J.: On elastic-thermo-plastic materials at finite deformations. Int. J. Plast. 14(1–3), 173–191 (1998)

    Article  MATH  Google Scholar 

  10. Coleman B.D., Owen D.R.: On thermodynamics and elastic-plastic materials. Arch. Ration. Mech. Anal. 59, 25–51 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Farren W.S., Taylor G.I.: The heat developed during plastic extension of metals. Proc. R. Soc. Lon. A 107, 422–451 (1925)

    Article  Google Scholar 

  12. Germain P., Nguyen Q.S., Suquet P.: Continuum thermodynamics. J. Appl. Mech. 50, 1010–1020 (1983)

    Article  MATH  Google Scholar 

  13. Haupt, P.: Thermodynamics of solids. In: Muschik, W. (eds.) Non-Equilibrium Thermodynamics with Application to Solids, CISM Course, vol. 336. Springer, Wien (1993)

  14. Houlsby G.T., Puzrin A.M.: A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plast. 16, 1017–1047 (2000)

    Article  MATH  Google Scholar 

  15. Ikegami, K.: Experimental plasticity on the anisotropy of metals. In: Colloques internationaux du CNRS 295 Comportement mécanique de solides anisotropes, pp. 201–242 (1982)

  16. Kamlah M., Haupt P.: On the macroscopic description of stored energy and self heating during plastic deformation. Int. J. Plast. 13(10), 893–911 (1998)

    Article  Google Scholar 

  17. Krawietz A.: Materialtheorie. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  18. Lehmann T.: The Constitutive Law in Thermoplasticity. CISM Course 281. Springer, Wien (1984)

  19. Lin R.C., Brocks W., Betten J.: On dissipation inequalities and finite strain inelastic constitutive laws: theoretical and numerical comparisons. Int. J. Plast. 22, 1825–1857 (2006)

    Article  MATH  Google Scholar 

  20. Lubliner J.: On the thermodynamic foundations of non-linear solid mechanics. Int. J. Non Linear Mech. 7, 237–254 (1972)

    Article  MATH  Google Scholar 

  21. Lucchesi M., Silhavy M.: Thermoplastic materials with combined hardening. Int. J. Plast. 9, 291–315 (1993)

    Article  MATH  Google Scholar 

  22. Maugin G.A.: The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  23. Maugin, G. A.: Thermomechanics of Nonlinear Irreversible Behaviors—An Introduction. World Sci. Singapore (1999)

  24. Phillips A., Liu C.S., Justusson J.W.: An experimental investigation of yield surfaces at elevated temperatures. Acta Mech. 14, 119–146 (1972)

    Article  Google Scholar 

  25. Phillips, A.: The foundations of thermoplasticity—experiments and theory. In: Zeman, J.L., Ziegler, F. (eds.) Topics in Applied Continuum Mechanics, Springer-Verlag, Wien, pp. 1–21 (1974)

  26. Ristinmaa M., Wallin M., Ottosen N.S.: Thermodynamic format and heat generation of isotropic hardening plasticity. Acta Mech. 194, 103–121 (2007)

    Article  MATH  Google Scholar 

  27. Rosakis P., Rosakis A.J., Ravichandran G., Hodowany J.: A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J. Mech. Phys. Solids 48, 581–607 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Svendsen B.: A thermodynamic formulation of finite deformation elastoplasticity with hardening based on the concept of material isomorphism. Int. J. Plast. 14(6), 473–488 (1998)

    Article  MATH  Google Scholar 

  29. Taylor G.I., Quinney H.: The latent heat remaining in a metal after cold working. Proc. R. Soc. Lon. A 163, 157–181 (1937)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Bertram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, A., Krawietz, A. On the introduction of thermoplasticity. Acta Mech 223, 2257–2268 (2012). https://doi.org/10.1007/s00707-012-0700-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0700-6

Keywords

Navigation