Skip to main content

A Primer on Plasticity

  • Chapter
  • First Online:
Constitutive Modelling of Solid Continua

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 262))

Abstract

This chapter surveys fundamental aspects of the modern theory of finite elastoplasticity. We emphasize the now-ubiquitous decomposition of the deformation into elastic and plastic parts, the central roles played by dissipation and material symmetry, and a framework for the modeling of scale-dependent work hardening in crystalline and isotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell JF, Green RE Jr (1967) An experimental study of the double-slip deformation hypothesis for face-centered cubic crystals. Philso Mag 15:469–476

    Article  Google Scholar 

  2. Cermelli P, Gurtin ME (2001) On the characterization of geometrically necessary dislocations in finite plasticity. J Mech Phys Solids 49:1539–1568

    Article  Google Scholar 

  3. Chadwick P (1976) Continuum mechanics: concise theory and problems. Dover Publications, New York

    Google Scholar 

  4. Cleja-Tigoiu S (2003) Consequences of the dissipative restrictions in finite anisotropic elasto-plasticity. Int J Plast 19:1917–1964

    Article  Google Scholar 

  5. Cleja-Tigoiu S (2003) Dissipative nature of plastic deformations in finite anisotropic elasto-plasticity. Math Mech Solids 8:575–613

    Article  MathSciNet  Google Scholar 

  6. Cleja-Tigoiu S, Soós E (1990) Elastoviscoplastic models with relaxed configurations and internal variables. Appl Mech Rev 43:131–151

    Article  MathSciNet  Google Scholar 

  7. Cullity B (1978) Elements of X-ray diffraction. Addison-Wesley, Reading, MA

    Google Scholar 

  8. Deseri L, Owen DR (2002) Invertible structured deformations and the geometry of multiple slip in single crystals. Int J Plast 18:833–849

    Article  Google Scholar 

  9. Edmiston J, Steigmann DJ, Johnson GJ, Barton N (2013) A model for elastic-viscoplastic deformations of crystalline solids based on material symmetry: theory and plane-strain simulations. Int J Eng Sci 63:10–22

    Article  MathSciNet  Google Scholar 

  10. Epstein M (2010) The geometrical language of continuum mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. Epstein M, Elzanowski M (2007) Material inhomogeneities and their evolution. Springer, Berlin

    MATH  Google Scholar 

  12. Epstein M, de León M (2000) Homogeneity without uniformity: toward a mathematical theory of functionally graded materials. Int J Solids Struct 37:7577–7591

    Article  MathSciNet  Google Scholar 

  13. Epstein M, Maugin GA (1995) On the geometrical material structure of anelasticity. Acta Mech 115:119–131

    Article  MathSciNet  Google Scholar 

  14. Geiringer H (1973) Ideal plasticity. In: Truesdell C (ed) Mechanics of Solids, vol III. Springer, Berlin, pp 403–533

    Chapter  Google Scholar 

  15. Gupta A, Steigmann DJ, Stölken JS (2007) On the evolution of plasticity and incompatibility. Math Mech Solids 12:583–610

    Article  MathSciNet  Google Scholar 

  16. Gurtin ME, Fried E, Anand L (2010) Mechanics and thermodynamics of continua. Cambridge University Press, Cambridge

    Book  Google Scholar 

  17. Havner KS (1992) Finite plastic deformation of crystalline solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Hutchinson JW (2000) Plasticity at the micron scale. Int J Solids Struct 37:225–238

    Article  MathSciNet  Google Scholar 

  19. Krishnan J, Steigmann DJ (2014) A polyconvex framework for isotropic elastoplasticity theory. IMA J Appl Math 79:722–738

    Article  MathSciNet  Google Scholar 

  20. Lovelock D, Rund H (1989) Tensors, differential forms and variational principles. Dover Publications, New York

    MATH  Google Scholar 

  21. Lucchesi M, Šilhavý M (1991) Il’yushin’s conditions in non-isothermal plasticity. Arch Ration Mech Anal 113:121–163

    Article  Google Scholar 

  22. Neff P (2003) Some results concerning the mathematical treatment of finite multiplicative elasto-plasticity. In: Hutter K, Baaser H (eds) Deformation and failure in metallic and granular structures. Lecture notes in applied and computational mechanics, vol 10. Springer, Berlin, pp 251–274

    Google Scholar 

  23. Noll W (1967) Materially uniform simple bodies with inhomogeneities. Arch Ration Mech Anal 27:1–32

    Article  MathSciNet  Google Scholar 

  24. Prager W (1961) Introduction to the mechanics of continua. Ginn & Co., Boston

    MATH  Google Scholar 

  25. Rengarajan G, Rajagopal K (2001) On the form for the plastic velocity gradient \(L_{p}\) in crystal plasticity. Math Mech Solids 6:471–480

    Google Scholar 

  26. Sadik S, Yavari A (2015) On the origins of the idea of the multiplicative decomposition of the deformation gradient. Math Mech Solids 22:771–772

    Article  MathSciNet  Google Scholar 

  27. Steigmann DJ, Gupta A (2011) Mechanically equivalent elastic-plastic deformations and the problem of plastic spin. Theor Appl Mech 38:397–417

    Article  MathSciNet  Google Scholar 

  28. Steinmann P (1996) Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int J Eng Sci 34:1717–1735

    Article  Google Scholar 

  29. Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115

    Article  Google Scholar 

  30. Taylor GI (1934) The mechanism of plastic deformation of crystals. Part 1: theoretical. Proc R Soc A 145:326–387

    Article  Google Scholar 

  31. Wang C-C (1967) On the geometric structure of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch Ration Mech Anal 27:33–94

    Article  MathSciNet  Google Scholar 

  32. Zangwill WI (1969) Nonlinear programming. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Steigmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steigmann, D.J. (2020). A Primer on Plasticity. In: Merodio, J., Ogden, R. (eds) Constitutive Modelling of Solid Continua. Solid Mechanics and Its Applications, vol 262. Springer, Cham. https://doi.org/10.1007/978-3-030-31547-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31547-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31546-7

  • Online ISBN: 978-3-030-31547-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics