Skip to main content
Log in

Acoustic scattering of spherical waves incident on a long fluid-saturated poroelastic cylinder

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Acoustic scattering of spherical waves generated by a monopole point source in a perfect (inviscid and ideal) compressible fluid by a fluid-saturated porous cylinder of infinite length is studied theoretically in the present study. The formulation utilizes the Biot theory of dynamic poroelasticity along with the appropriate wave-field expansions, the translational addition theorem for spherical wave functions, and the pertinent boundary conditions to obtain a closed-form solution in the form of infinite series. The analytical results are illustrated with a numerical example in which a monopole point source within water is located near a porous cylinder with a water-saturated Ridgefield sandstone formation. The numerical results reveal the effects of source excitation frequency, the cylinder interface permeability condition, and the location of the point source and the field point on the backscattered pressure magnitudes. Limiting cases are considered, and the obtained numerical results are validated by already well-known solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faran J.J.: Sound scattering by solid cylinders and spheres. J. Acoust. Soc. Am. 23, 405–418 (1951)

    Article  MathSciNet  Google Scholar 

  2. Sodagar S., Honarvar F., Sinclair A.N.: Multiple scattering of an obliquely incident plane acoustic wave from a grating of immersed cylindrical shells. Appl. Acoust. 10, 1–10 (2011)

    Article  Google Scholar 

  3. Maze G., Leon F., Veksler N.D.: Scattering of an obliquely incident plane acoustic wave by a circular cylindrical shell: experimental results. Acta Acustica united with Acustica 84, 1–11 (1998)

    Google Scholar 

  4. Honarvar F., Sinclair A.N.: Scattering of an obliquely incident plane wave from a circular clad rod. J. Acoust. Soc. Am. 102, 41–48 (1997)

    Article  Google Scholar 

  5. Leon F., Chati F., Conoir J.M.: Acoustic scattering by an elastic elliptic cylinder in water: numerical results and experiments. Ultrasonics 42, 297–300 (2004)

    Article  Google Scholar 

  6. Prospathopoulos A.M., Athanassoulis G.A., Belibassakis K.A.: Underwater acoustic scattering from a radially layered cylindrical obstacle in a 3D ocean waveguide. J. Sound Vib. 319, 1285–1300 (2009)

    Article  Google Scholar 

  7. Flax L., Varadan V.K., Varadan V.V.: Scattering of an obliquely incident acoustic wave by an infinite cylinder. J. Acoust. Soc. Am. 68, 1832–1835 (1980)

    Article  MATH  Google Scholar 

  8. Li T., Ueda M.: Sound scattering of a plane wave obliquely incident on a cylinder. J. Acoust. Soc. Am. 86, 2363–2368 (1989)

    Article  Google Scholar 

  9. Ahmad F., Rahman A.: Acoustic scattering by transversely isotropic cylinders. Int. J. Eng. Sci. 38, 325–335 (2000)

    Article  Google Scholar 

  10. Honarvar F., Sinclair A.N.: Acoustic wave scattering from transversely isotropic cylinders. J. Acoust. Soc. Am. 100, 57–63 (1996)

    Article  Google Scholar 

  11. Fan Y., Honarvar F., Sinclair A.N., Jafari M.R.: Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves. J. Acoust. Soc. Am. 113, 102–113 (2003)

    Article  Google Scholar 

  12. Williams K.L., Kargl S.G., Thorsos E.I., Burnett D.S., Lopes J.L., Zampolli M., Marston P.L.: Acoustic scattering from a solid aluminum cylinder in contact with a sand sediment: measurements, modeling and interpretation. J. Acoust. Soc. Am. 127, 3356–3371 (2010)

    Article  Google Scholar 

  13. Calvo D.C., Rudd K.E., Zampolli M., Sanders W.M., Bibee L.D.: Simulation of acoustic scattering from an aluminum cylinder near a rough interface using the elastodynamic finite integration technique. Wave Motion 47, 616–634 (2010)

    Article  MATH  Google Scholar 

  14. Lee D.S.: Scattering of an incident acoustic wave by an infinite elastic cylinder in a shallow sea. Math. Methods Appl. Sci. 32, 757–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mitri F.G.: Acoustic backscattering enhancements resulting from the interaction of an obliquely incident plane wave with an infinite cylinder. Ultrasonics 50, 675–682 (2010)

    Article  Google Scholar 

  16. Mechel F.P.: Absorption cross section of absorber cylinders. J. Sound Vib. 107, 131–148 (1986)

    Article  Google Scholar 

  17. Laperre J., Thys W.: Scattering of ultrasonic waves by an immersed porous cylinder. Acoust. Lett. 16, 9–16 (1992)

    Google Scholar 

  18. Umnova O., Attenborough K., Linton C.M.: Effects of porous covering on sound attenuation by periodic arrays of cylinders. J. Acoust. Soc. Am. 119, 278–284 (2006)

    Article  Google Scholar 

  19. Hasheminejad S.M., Avazmohammadi R.: Acoustic diffraction by a pair of poroelastic cylinders. ZAMM J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik 86, 589–605 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hasheminejad S.M., Alibakhshi M.A.: Diffraction of sound by a poroelastic cylindrical absorber near an impedance plane. Int. J. Mech. Sci. 49, 1–12 (2007)

    Article  MATH  Google Scholar 

  21. Gatmiri B., Eslami H.: Wave scattering in cross-anisotropic porous media around the cavities and inclusions. Soil Dyn. Earthq. Eng. 28, 1014–1027 (2008)

    Article  Google Scholar 

  22. Zhou, X.-L., Wang, J.-H., Xu, B., Jiang, L.-F.: Dynamic response of a circular pipeline in a poroelastic medium. Mech. Res. Commun. 36, 898–905

  23. Sebaa N., Fellah Z.E.A., Fellah M., Ogam E., Wirgin A., Mitri F.G., Depollier C., Lauriks W.: Ultrasonic characterization of human cancellous bone using the Biot theory: inverse problem. J. Acoust. Soc. Am. 120, 1818–1824 (2006)

    Article  Google Scholar 

  24. Ogam E., Depollier C., Fellah Z.E.A.: The direct problem of acoustic diffraction of an audible probe radiation by an air-saturated porous cylinder. J. Appl. Phys. 108, 113519 (2010). doi:10.1063/1.3514546

    Article  Google Scholar 

  25. Ogam E., Depollier C., Fellah Z.E.A.: The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation. Rev. Sci. Instrum. 81, 094902 (2010). doi:10.1063/1.3482015

    Article  Google Scholar 

  26. Ogam E., Fellah Z.E.A.: The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation. AIP Adv. 1, 032174 (2011). doi:10.1063/1.3647619

    Article  Google Scholar 

  27. Osman A.S., Randolph M.F.: Response of a solid infinite cylinder embedded in a poroelastic medium and subjected to a lateral load. Int. J. Solids Struct. 47, 2414–2424 (2010)

    Article  MATH  Google Scholar 

  28. Piquette J.C.: Spherical wave scattering by an elastic solid cylinder of infinite length. J. Acoust. Soc. Am. 79, 1248–1259 (1986)

    Article  Google Scholar 

  29. Li T., Ueda M.: Sound scattering of a spherical wave incident on a cylinder. J. Acoust. Soc. Am. 87, 1871–1879 (1990)

    Article  Google Scholar 

  30. Sheng J., Alex E.H.: Spherical wave backscatter from straight cylinders: thin-wire standard targets. J. Acoust. Soc. Am. 94, 2756–2765 (1993)

    Article  Google Scholar 

  31. Lui W.K., Li K.M.: The scattering of sound by a long cylinder above an impedance boundary. J. Acoust. Soc. Am. 127, 664–674 (2010)

    Article  Google Scholar 

  32. Chen J.-T., Lee Y.-T., Lin Y.-J., Chen I.-L., Lee J.-W.: Scattering of sound from point sources by multiple circular cylinders using addition theorem and superposition technique. Numer. Methods Partial Differ. Equ. 27, 1365–1383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hasheminejad S.M., Hosseini H.: Dynamic interaction of a spherical radiator in a fluid-filled cylindrical borehole within a poroelastic formation. Mech. Res. Commun. 35, 158–171 (2008)

    Article  Google Scholar 

  34. Hasheminejad S.M., Hosseini H.: Nonaxisymmetric interaction of a spherical radiator in a fluid-filled permeable borehole. Int. J. Solids Struct. 45, 24–47 (2008)

    Article  MATH  Google Scholar 

  35. Achenbach J.D.: Wave Propagation in Elastic Solids. North-Holland, New York (1976)

    Google Scholar 

  36. Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid I, low-frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)

    Article  MathSciNet  Google Scholar 

  37. Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid II, high-frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956)

    Article  MathSciNet  Google Scholar 

  38. Bourbie T., Coussy O., Zimmer B.E.: Acoustics of Porous Media. Gulg Publishing, Houston (1987)

    Google Scholar 

  39. Wilmanski K.: A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dyn. Earthq. Eng. 26, 509–536 (2006)

    Article  Google Scholar 

  40. Johnson D.L., Koplik J., Dashen R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 76, 379–402 (1987)

    Article  Google Scholar 

  41. Johnson D.L., Plona T.J., Kojima H.: Probing porous media with first and second sound, II. Acoustic properties of water saturated porous media. J. Appl. Phys. 76, 115–125 (1994)

    Article  Google Scholar 

  42. Abramowitz M., Stegun I.: Handbook of Mathematical Functions. National Bureau of Standards, Washington DC (1964)

    MATH  Google Scholar 

  43. Honarvar F., Sinclair A.N.: Improvements to the mathematical model of acoustic wave scattering from transversely isotropic cylinders. Scientia Iranica 17, 157–166 (2010)

    MATH  Google Scholar 

  44. Lo W.C., Sposito G., Majer E.: Low-frequency dilatational wave propagation through fully-saturated poroelastic media. Adv. Water Resour. 29, 408–416 (2006)

    Article  Google Scholar 

  45. Carcione J.M., Cavallini F., Santos J.E., Ravazzoli C.L., Gauzellino P.M.: Wave propagation in partially saturated porous media, simulation of a second slow wave. Wave Motion 39, 227–240 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Namazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, H., Namazi, N. Acoustic scattering of spherical waves incident on a long fluid-saturated poroelastic cylinder. Acta Mech 223, 2075–2089 (2012). https://doi.org/10.1007/s00707-012-0697-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0697-x

Keywords

Navigation