Skip to main content
Log in

Effects of high-order surface stress on buckling and resonance behavior of nanowires

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A theoretical framework, accounting for high-order surface stress, is implemented in a continuum mechanics model based on the Euler-Bernoulli theory of beams and columns to simulate the buckling and resonance behavior of nanowires (NWs). Closed-form expressions for the critical buckling load of uniaxial compression of NWs are derived for different types of end conditions. Size-dependent overall Young’s modulus is characterized versus the diameter of the NWs and is compared with the experimental data. The resonance frequency of NWs is also studied and compared with the simulation results based on nonlinear, finite deformation kinematics. We demonstrate that the present prediction considering both surface moment and surface stress agrees well with the experimental data, while the pure surface stress model may not be able to capture the general trend when the NW’s diameter is less than a certain size. We conclude that the present continuum mechanics approach, considering both high-order surface effects, could be served as one of the feasible tools to analyze the mechanical behavior of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finn R.: Equilibrium Capillary Surfaces. Springer, New York (1986)

    Book  MATH  Google Scholar 

  2. Gibbs J.W.: The Collected Works of J. W. Gibbs, vol. 1. Longman, New York (1928)

    Google Scholar 

  3. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gurtin M.E., Murdoch A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  5. Chen T., Chiu M.S., Weng C.N.: Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006)

    Article  Google Scholar 

  6. Ru C.Q.: Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Sci. China Phys. 53, 536–544 (2010)

    MathSciNet  Google Scholar 

  7. Cammarata R.C., Sieradzki K., Spaepen F.: Simple model for interface stresses with application to misfit dislocation generation in epitaxial thin films. J. Appl. Phys. 87, 1227 (2000)

    Article  Google Scholar 

  8. Cammarata R.C., Trimble T.M., Srolovitz D.J.: Surface stress model for intrinsic stresses in thin films. J. Mater. Res. 15, 2468–2474 (2000)

    Article  Google Scholar 

  9. Freund L.B., Suresh S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  10. Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  11. Sharma P., Ganti S., Bhate N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)

    Article  Google Scholar 

  12. Zhang Y., Ren Q., Zhao Y.: Modelling analysis of surface stress on a rectangular cantilever beam. J. Phys. D Appl. Phys. 37, 2140–2145 (2004)

    Article  Google Scholar 

  13. Duan H.L., Wang J., Huang Z.P., Karihaloo B.L.: Eshelby formalism for nano-inhomogeneities. Proc. R. Soc. A. 461, 3335–3353 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yan Z., Jiang L.: Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J. Phys. D Appl. Phys. 44, 075404 (2011)

    Article  Google Scholar 

  15. Wang G.F., Wang T.J.: Deformation around a nanosized elliptical hole with surface effect. Appl. Phys. Lett. 89, 161901 (2006)

    Article  Google Scholar 

  16. Wang G.F., Feng X.Q.: Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett. 94, 141913 (2009)

    Article  Google Scholar 

  17. Wang G.F., Feng X.Q.: Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D Appl. Phys. 42, 155411 (2009)

    Article  MathSciNet  Google Scholar 

  18. Yang F.Q.: Size-dependent effective modulus of elastic composite materials: spherical nanocavities at dilute concentrations. J. Appl. Phys. 95, 3516–3520 (2004)

    Article  Google Scholar 

  19. Li B., Huang S.Q., Feng X.Q.: Buckling and postbuckling of a compressed thin film bonded on a soft elastic layer: a three-dimensional analysis. Arch. Appl. Mech. 80, 175–188 (2010)

    Article  MATH  Google Scholar 

  20. Yan Z., Jiang L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22, 245703 (2011)

    Article  Google Scholar 

  21. Wang G.F., Feng X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007)

    Article  Google Scholar 

  22. He J., Lilley C.M.: Surface stress effect on bending resonance of nanowires with different boundary conditions. Appl. Phys. Lett. 93, 263108 (2008)

    Article  Google Scholar 

  23. Chen H.A., Liu X., Hu G.K.: Overall plasticity of micropolar composites with interface effect. Mech. Mater. 40, 721–728 (2008)

    Article  Google Scholar 

  24. Duan H.L., Wang J., Huang Z.P., Karihaloo B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Benveniste Y., Miloh T.: Soft neutral elastic inhomogeneities with membrane-type interface conditions. J. Elast. 88, 87–111 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen T., Dvorak G.J., Yu C.C.: Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta. Mech. 188, 39–54 (2007)

    Article  MATH  Google Scholar 

  27. Quang H.L., He Q.C.: Estimation of the effective thermoelastic moduli of fibrous nanocomposites with cylindrically anisotropic phases. Arch. Appl. Mech. 79, 225–248 (2009)

    Article  MATH  Google Scholar 

  28. Chen T., Chiu M.S.: Effects of higher-order interface stresses on the elastic states of two-dimensional composites. Mech. Mater. 43, 212–221 (2011)

    Article  Google Scholar 

  29. Jing G.Y., Duan H.L., Sun X.M., Zhang Z.S., Xu J., Li Y.D., Wang X.J., Yu D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B. 73, 235409 (2006)

    Article  Google Scholar 

  30. Zhu Y., Xu F., Qin Q., Fung W.Y., Lu W.: Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 9, 3934–3939 (2009)

    Article  Google Scholar 

  31. Timoshenko S.P., Gere J.M.: Theory of Elastic Stability. McGraw-Hill, New York (1961)

    Google Scholar 

  32. Weaver W., Timoshenko S.P., Young D.H.: Vibration Problems in Engineering. Wiley, New York (1990)

    Google Scholar 

  33. Cuenot S., Fretigny C., Demoustier-Champagne S., Nysten B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B. 69, 165410 (2004)

    Article  Google Scholar 

  34. Song J., Wang X., Riedo E., Wang Z.L.: Elastic property of vertically aligned nanowires. Nano Lett. 5, 1954–1958 (2005)

    Article  Google Scholar 

  35. Chen C.Q., Shi Y., Zhang Y.S., Zhu J., Yan Y.J.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006)

    Article  Google Scholar 

  36. Ni H., Li X.: Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 17, 3591–3597 (2006)

    Article  Google Scholar 

  37. Riaz M., Nur O., Willander M., Klason P.: Buckling of ZnO nanowires under uniaxial compression. Appl. Phys. Lett. 92, 103118 (2008)

    Article  Google Scholar 

  38. Jing Y., Meng Q., Gao Y.: Molecular dynamics simulation on the buckling behavior of silicon nanowires under uniaxial compression. Comput. Mater. Sci. 45, 321–326 (2009)

    Article  Google Scholar 

  39. Cho J., Joshi M.S., Sun C.T.: Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos. Sci. Technol. 66, 1941–1952 (2006)

    Article  Google Scholar 

  40. Ji L.W., Young S.J., Fang T.H., Liu C.H.: Buckling characterization of vertical ZnO nanowires using nanoindentation. Appl. Phys. Lett. 90, 033109 (2007)

    Article  Google Scholar 

  41. Young S.J., Ji L.W., Chang S.J., Fang T.H., Hsueh T.J., Meen T.H., Chen I.C.: Nanoscale mechanical characteristics of vertical ZnO nanowires grown on ZnO: Ga/glass templates. Nanotechnology 18, 225603 (2007)

    Article  Google Scholar 

  42. Chiu M.S., Chen T.: Effects of high-order surface stress on static bending behavior of nanowires. Physica E 44, 714–718 (2011)

    Article  Google Scholar 

  43. Chiu, M.S., Chen, T.: Higher-order surface stress effects on buckling of nanowires under uniaxial compression. Procedia Engineering 10, 397–402 (2011) (11th International Conference on the Mechanical Behavior of Materials, ICM11)

    Google Scholar 

  44. He J., Lilley C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)

    Article  Google Scholar 

  45. Shenoy V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B. 71, 094104 (2005)

    Article  Google Scholar 

  46. Song F., Huang G.L., Park H.S., Liu X.N.: A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses. Int. J. Solids Struct. 48, 2154–2163 (2011)

    Article  Google Scholar 

  47. Park H.S.: Surface stress effects on the resonant properties of silicon nanowires. J. Appl. Phys. 103, 123504 (2008)

    Article  Google Scholar 

  48. Park H.S.: Surface stress effects on the critical buckling strains of silicon nanowires. Comput. Mater. Sci. 51, 396–401 (2012)

    Article  Google Scholar 

  49. Park H.S., Klein P.A.: Surface stress effects on the resonant properties of metal nanowires: the importance of finite deformation kinematics and the impact of the residual surface stress. J. Mech. Phys. Solids 56, 3144–3166 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tungyang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, MS., Chen, T. Effects of high-order surface stress on buckling and resonance behavior of nanowires. Acta Mech 223, 1473–1484 (2012). https://doi.org/10.1007/s00707-012-0673-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0673-5

Keywords

Navigation