Skip to main content
Log in

Estimation of the effective thermoelastic moduli of fibrous nanocomposites with cylindrically anisotropic phases

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Recent developments in nanotechnology make it possible to fabricate nanofibers and identify their mechanical fibers. In particular, nanofibers are used as reinforcement in composites. The present work concerns unidirectional nanofibrous composites with cylindrically anisotropic phases and aims to analytically estimate their effective thermoelastic moduli. This objective is achieved by extending the classical generalized self-consistent model to the setting of thermoelasticity, to the case of cylindrically anisotropic phases, and to the incorporation of interface stress effect. Analytical closed-form estimations are derived for all the effective thermoelastic moduli, showing that these moduli depend on the fiber cross-section size. Numerical examples are provided to illustrate this size-dependent effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benveniste, Y., Dvorak, G.J., Chen, T.: On effective properties of composites with coated cylindrically orthotropic fibers. Mech. Mater. 12, 289–297 (1991)

    Article  Google Scholar 

  2. Benveniste, Y., Dvorak, G.J.: On uniform fields and universal relations in piezoelectric composites. J. Mech. Phys. Solids 40, 1295–1312 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cahn, J.W.: Surface stress and the chemical equilibrium of small crystals—I. The case of the isotropic surface. Acta Metall. 28, 1333–1338 (1980)

    Article  Google Scholar 

  4. Chadwick, P., Vianello, M., Cowin, S.C.: A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids 49, 2471–2492 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chatterjee, A., Deopura, B.L.: Carbon nanotubes and nanofibre: an overview. Fibers Polym. 3, 134–139 (2002)

    Article  Google Scholar 

  6. Chen, T., Dvorak, G.J., Benveniste, Y.: Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mech. Mater. 9, 17–32 (1990)

    Article  Google Scholar 

  7. Chen, T., Dvorak, G.J., Yu, C.C.: Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mech. 188, 39–54 (2007)

    Article  MATH  Google Scholar 

  8. Chen, T., Dvorak, G.J.: Fibrous nanocomposites with interface stress: Hill’s and Levin’s connections for effective moduli. Appl. Phys. Lett. 88, 211912–211914 (2006)

    Article  Google Scholar 

  9. Chen, T., Dvorak, G.J., Yu, C.C.: Solids containing spherical nano-inclusions with interface stress: effective properties and thermal–mechanical connections. Int. J. Solids Struct. 44, 941–955 (2007)

    Article  MATH  Google Scholar 

  10. Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315–330 (1979)

    Article  MATH  Google Scholar 

  11. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Eshelby formalism for nano-inhomogeneities. Proc. R. Soc. A 461, 3335–3353 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Duan, H.L., Karihaloo, B.L.: Thermo-elastic properties of heterogeneous materials with imperfect interfaces: generalized Levins’s formula and Hill’s connections. J. Mech. Phys. Solids 55, 1036–1052 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 8, 1827–1854 (2005)

    Article  MathSciNet  Google Scholar 

  15. Dvorak, G.J.: On uniform fields in heterogeneous media. Proc. R. Soc. Lond. A 431, 89–110 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43, 81–108 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gurtin, M.E., Murdoch, M.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hashin, Z.: Thermoelastic properties and conductivity of carbon/carbon fiber composites. Mech. Mater. 8, 293–308 (1990)

    Article  Google Scholar 

  19. Hill, R.: Theory of mechanical properties of fiber-strengthened materials: I. Elastic Behav. J. Mech. Phys. Solids 12, 199–212 (1964)

    Article  Google Scholar 

  20. Kerner, E.H.: The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc. B. 69, 808–813 (1956)

    Article  Google Scholar 

  21. Le Quang, H., He, Q.-C.: Thermoelastic composites with columnar microstructure and cylindrically anisotropic phases: Part I. Exact results. Int. J. Eng. Sci. 45, 402–423 (2007)

    Article  MathSciNet  Google Scholar 

  22. Le Quang, H., He, Q.-C.: Thermoelastic composites with columnar microstructure and cylindrically anisotropic phases: Part II. One-parameter generalized self-consistent estimates. Int. J. Eng. Sci. 45, 424–435 (2007)

    Article  MathSciNet  Google Scholar 

  23. Le Quang, H., He, Q.-C.: Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic phases. J. Mech. Phys. Solids 55, 1889–1921 (2007)

    MathSciNet  Google Scholar 

  24. Le Quang, H., He, Q.-C.: Variational principles and bounds for elastic inhomogeneous materials with coherent imperfect interfaces (2008, submitted)

  25. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  26. Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  27. Murdoch, A.I.: A thermodynamical theory of elastic-material interfaces. Q. J. Mech. Appl. Math. 29, 245–275 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Murdoch, A.I.: Some fundamental aspects of surface modelling. J. Elast. 80, 33–52 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys. Solids 41, 1499–1514 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sandler, J., Windle, A.H., Werner, P., Altstadt, V., Es, M.V., Shaffer, M.S.P.: Carbon-nanofibre-reinforced poly(either ether ketone) fibres. J. Mater. Sci. 38, 2135–2141 (2003)

    Article  Google Scholar 

  31. Schulgasser, K.: Relationships between the effective properties of transversely isotropic piezoelectric composites. J. Mech. Phys. Solids 40, 473–479 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sharma, P., Dasgupta, A.: Average elastic fields and scale-dependent overall properties of heterogeneous micropolar materials containing spherical and cylindrical inhomogeneities. Phys. Rev. B 66, 224110-1–224110-10 (2002)

    Google Scholar 

  33. Shuttleworth, R.: The surface tension of solid. Proc. Phys. Soc. A 63, 444–457 (1950)

    Article  Google Scholar 

  34. Smith, J.C.: Correction and extension of van der Poel’s method for calculating the shear modulus of a particulate composite. J. Res. Natl. Bur. Stand. 78A, 355–361 (1974)

    Google Scholar 

  35. Smith, J.C.: Simplification of van der Poel’s formula for the shear modulus of a particulate composite. J. Res. Natl. Bur. Stand. 79A, 419–423 (1975)

    Google Scholar 

  36. Sundararajan, S., Bhushan, B., Namazu, T., , , , : Mechanical property measurements of nanoscale structures using an atomic force microscope. Ultramicroscopy 91, 111–118 (2002)

    Article  Google Scholar 

  37. Tan, E.P.S., Lim, C.T.: Mechanical characterization of nanofibers—a review. Comp. Sci. Tech. 66, 1102–111 (2006)

    Article  Google Scholar 

  38. Torquato, S.: Random Heterogeneous Materials: Micromechanics Overall Properties of Heterogeneous Materials. Springer, New York (2001)

    Google Scholar 

  39. Poel, C.: On the rheology of concentrated suspensions. Rheol. Acta 1, 198–205 (1958)

    Article  Google Scholar 

  40. Yvonnet, J., Le Quang, H., He, Q.-C.: An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites. Comput. Mech. (2007, in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Le Quang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quang, H.L., He, Q.C. Estimation of the effective thermoelastic moduli of fibrous nanocomposites with cylindrically anisotropic phases. Arch Appl Mech 79, 225–248 (2009). https://doi.org/10.1007/s00419-008-0223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0223-8

Keywords

Navigation