Skip to main content
Log in

An analytical solution of the rebound indentation problem for an isotropic linear viscoelastic layer loaded with a spherical punch

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A unilateral frictionless axisymmetric contact problem for an isotropic viscoelastic layer attached to a rigid substrate and loaded with a spherical indenter is considered. It is assumed that the indentation protocol is composed of two stages. In the indentation phase, the layer is subjected to displacement loading, while at the end of the first stage, the load is immediately removed and the second stage, called the recovery phase, lasts for a theoretically indefinite time. Under the assumption of time-independent Poisson’s ratio, we derive closed-form analytical expressions for the contact force (in the indentation phase) and for the indentation displacement (in the the recovery phase). The obtained closed-form analytical solution is valid for the indentation phase with an arbitrary monotonic loading displacement and can be used for evaluation of the rebound indentation test for soft biological tissues and originally suggested for assessment of articular cartilage viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mattice J.M., Lau A.G., Oyen M.L., Kent R.W.: Spherical indentation load-relaxation of soft biological tissues. J. Mater. Res. 21, 2003–2010 (2006)

    Article  Google Scholar 

  2. Lee E.H., Radok J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. Trans. ASME 27, 438–444 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng Y.-T., Cheng C.-M.: Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids. Mater. Sci. Eng. A 409, 93–99 (2005)

    Article  Google Scholar 

  4. Giannakopoulos A.E.: Elastic and viscoelastic indentation of flat surfaces by pyramid indentors. J. Mech. Phys. Solids 54, 1305–1332 (2006)

    Article  MATH  Google Scholar 

  5. Vandamme M., Ulm F.-J.: Viscoelastic solutions for conical indentation. Int. J. Solids Struct. 43, 3142–3165 (2006)

    Article  MATH  Google Scholar 

  6. Jäger A., Lackner R., Eberhardsteiner J.: Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account. Meccanica 42, 293–306 (2007)

    Article  MATH  Google Scholar 

  7. Cheng L., Xia X., Yu W., Scriven L.E., Gerberich W.W.: Flat-punch indentation of viscoelastic material. J. Polym. Sci. B Polym. Phys. 38, 10–22 (2000)

    Article  Google Scholar 

  8. Cheng L., Xia X., Yu W., Scriven L.E., Gerberich W.W.: Spherical-tip indentation of viscoelastic material. Mech. Mater. 37, 213–226 (2005)

    Article  Google Scholar 

  9. Oyen M.L.: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86(33–35), 5625–5641 (2006)

    Article  Google Scholar 

  10. Tweedie C.A., Van Vliet K.J.: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21, 1576–1589 (2006)

    Article  Google Scholar 

  11. Shimizu S., Yanagimoto T., Sakai M.: Pyramidal indentation load-depth curve of viscoelastic materials. J. Mater. Res. 14, 4075–4086 (1999)

    Article  Google Scholar 

  12. Huang G., Lu H.: Measurement of Young’s relaxation modulus using nanoindentation. Mech. Time-Depend. Mater. 10, 229–243 (2006)

    Article  MathSciNet  Google Scholar 

  13. Larsson P.-L., Carlsson S.: On microindentation of viscoelastic polymers. Polym. Test. 17, 49–75 (1998)

    Article  Google Scholar 

  14. Oyen M.L.: Spherical indentation creep following ramp loading. J. Mater. Res. 20, 2094–2100 (2005)

    Article  Google Scholar 

  15. Cheng Y.-T., Yang F.: Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles. J. Mater. Res. 24, 3013–3017 (2009)

    Article  Google Scholar 

  16. Brown C.P., Crawford R.W., Oloyede A.: An alternative mechanical parameter for assessing the viability of articular cartilage. Proc. Inst. Mech. Eng. Part H 223, 53–62 (2009)

    Article  Google Scholar 

  17. Hunter S.C.: The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids 8, 219–234 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  18. Graham G.A.C.: The contact problem in the linear theory of viscoelasticity. Int. J. Eng. Sci. 3, 27–46 (1965)

    Article  MATH  Google Scholar 

  19. Ting T.C.T.: The contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845–854 (1966)

    Article  MATH  Google Scholar 

  20. Ting T.C.T.: Contact problems in the linear theory of viscoelasticity. J. Appl. Mech. 35, 248–254 (1968)

    Article  MATH  Google Scholar 

  21. Ramesh Kumar M.V., Narasimhan R.: Analysis of spherical indentation of linear viscoelastic materials. Curr. Sci. 87, 1088–1095 (2004)

    Google Scholar 

  22. Greenwood J.A.: Contact between an axisymmetric indenter and a viscoelastic half-space. Int. J. Mech. Sci. 52, 829–835 (2010)

    Article  Google Scholar 

  23. Hsueh C.H., Miranda P.: Master curves for Hertzian indentation on coating/substrate systems. J. Mater. Res. 19, 94–100 (2004)

    Article  Google Scholar 

  24. Sakai M.: Elastic and viscoelastic contact mechanics of coating/substrate composites in axisymmetric indentation. Philos. Mag. 86(33–35), 5607–5624 (2006)

    Article  Google Scholar 

  25. Choi S.T., Lee S.R., Earmme Y.Y.: Flat indentation of a viscoelastic polymer film on a rigid substrate. Acta Materialia 56, 5377–5387 (2008)

    Article  Google Scholar 

  26. Zhang C.Y., Zhang Y.W.: Extracting the mechanical properties of a viscoelastic polymeric film on a hard elastic substrate. J. Mater. Res. 14, 3053–3061 (2004)

    Article  Google Scholar 

  27. Cao Y.-P., Ji X.-Y., Feng X.-Q.: Geometry independence of the normalized relaxation functions of viscoelastic materials in indentation. Philos. Mag. 90, 1639–1655 (2010)

    Article  Google Scholar 

  28. Argatov I., Mishuris G.: An analytical solution for a linear viscoelastic layer loaded with a cylindrical punch: Evaluation of the rebound indentation test with application for assessing viability of articular cartilage. Mech. Res. Commun. 38, 565–568 (2011)

    Article  Google Scholar 

  29. Lebedev N.N., Ufliand Ia.S.: Axisymmetric contact problem for an elastic layer. J. Appl. Math. Mech. 22, 442–450 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hayes W.C., Keer L.M., Herrmann G., Mockros L.F.: A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5, 541–551 (1972)

    Article  Google Scholar 

  31. Sakamoto M., Li G., Hara T., Chao E.Y.S.: A new method for theoretical analysis of static indentation test. J. Biomech. 29, 679–685 (1996)

    Article  Google Scholar 

  32. Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G.: Biphasic creep and stress relaxation of articular cartilage in compression. J. Biomech. Eng. 102, 73–84 (1980)

    Article  Google Scholar 

  33. Hayes W.C., Mockros L.F.: Viscoelastic properties of human articular cartilage. J. Appl. Physiol. 31, 562–568 (1971)

    Google Scholar 

  34. Parsons J.R., Black J.: The viscoelastic shear behavior of normal rabbit articular cartilage. J. Biomech. 10, 21–29 (1977)

    Article  Google Scholar 

  35. Argatov I., Mishuris G.: Frictionless elliptical contact of thin viscoelastic layers bonded to rigid substrates. Appl. Math. Model. 35, 3201–3212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ateshian G.A., Lai W.M., Zhu W.B., Mow V.C.: An asymptotic solution for the contact of two biphasic cartilage layers. J. Biomech. 27, 1347–1360 (1994)

    Article  Google Scholar 

  37. Argatov, I.: Development of an asymptotic modeling methodology for tibio-femoral contact in multibody dynamic simulations of the human knee joint. Multibody Syst. Dyn. doi:10.1007/s11044-011-9275-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Argatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argatov, I. An analytical solution of the rebound indentation problem for an isotropic linear viscoelastic layer loaded with a spherical punch. Acta Mech 223, 1441–1453 (2012). https://doi.org/10.1007/s00707-012-0668-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0668-2

Keywords

Navigation