Skip to main content
Log in

Lamb wave propagation in the functionally graded piezoelectric–piezomagnetic material plate

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The propagation behaviour of Lamb waves in the functionally graded piezoelectric–piezomagnetic material plate with material parameters varying continuously along the thickness direction is investigated in this paper. The power series technique is employed to solve these variable coefficient ordinary differential equations. Dispersion equations are given for different boundary conditions. In numerical examples, the influence of the variation of each parameter on dispersion curves and cut-off frequency in electrically and magnetically open cases is discussed in detail. Results show that the elastic parameters and density varying along the thickness direction obviously influence the variation of phase velocity. Some variations in electric and magnetic parameters also affect the phase velocity but the influence is too small, while others almost cannot affect the dispersion curves. Cut-off frequency is closely related to two elastic parameters and to density, whereas other parameters almost cannot influence it. All the results can provide theoretical guidance not only for the analysis and design of a magnetoelectric transducer using functionally graded materials, but also for ultrasonic nondestructive evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nan C.W., Bichurin M.I., Dong S., Viehland D., Srinivasan G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  2. Bhangale R.K., Ganesan N.: Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. Int. J. Solids Struct. 43, 3230–3253 (2006)

    Article  MATH  Google Scholar 

  3. Pan E.: Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech. 68, 608–618 (2001)

    Article  MATH  Google Scholar 

  4. Pan E., Heyliger P.R.: Free vibrations of simply supported and multilayered magneto-electro-elastic plates. J. Sound. Vib. 252, 429–442 (2002)

    Article  Google Scholar 

  5. Chen Z., Yu S., Meng L., Lin Y.: Effective properties of layered magneto-electro-elastic composites. Compos. Struct. 57, 177–182 (2002)

    Article  Google Scholar 

  6. Wu X.-H., Shen Y.-P., Sun Q.: Lamb wave propagation in magnetoelectroelastic plates. Appl. Acoust. 68, 1224–1240 (2007)

    Article  Google Scholar 

  7. Chen J., Chen H., Pan E., Heyliger P.R.: Modal analysis of magneto-electro-elastic plates using the state-vector approach. J. Sound. Vib. 304, 722–734 (2007)

    Article  Google Scholar 

  8. Soh A.K., Liu J.X.: Interfacial shear horizontal waves in a piezoelectric-piezomagnetic bi-material. Philos. Mag. Lett. 86, 31–35 (2006)

    Article  Google Scholar 

  9. Liu J.X., Fang D.N., Wei W.Y., Zhao X.F.: Love waves in layered piezoelectric/piezomagnetic structures. J. Sound. Vib. 315, 146–156 (2008)

    Article  Google Scholar 

  10. Du J., Jin X., Wang J.: Love wave propagation in layered magneto-electro-elastic structures with initial stress. Acta. Mech. 192, 169–189 (2007)

    Article  MATH  Google Scholar 

  11. Liu G.R., Tani J., Ohyoshi T.: Lamb waves in a functionally gradient material plates and its transient response, part 1: theory; part 2: calculation result. Trans. Jpn. Soc. Mech. Eng. 57A, 131–142 (1991)

    Google Scholar 

  12. Liu G.R., Dai K.Y., Han X., Ohyoshi T.: Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates. J. Sound. Vib. 268, 131–147 (2003)

    Article  Google Scholar 

  13. Qian Z., Jin F., Wang Z., Kishimoto K.: Transverse surface waves on a piezoelectric material carrying a functionally graded layer of finite thickness. Int. J. Eng. Sci. 45, 455–466 (2007)

    Article  Google Scholar 

  14. Jin F., Qian Z.H., Wang Z.K., Kishimoto K.: Propagation behavior of love waves in a piezoelectric layered structure with inhomogeneous initial stress. Smart Mater. Struct. 14, 515–523 (2005)

    Article  Google Scholar 

  15. Liu J., Wang Z.: Study on the propagation of rayleigh surface waves in a graded half-space. Chin. J. Appl. Mech. 21, 106–109 (2004)

    Google Scholar 

  16. Cao X.S., Jin F., Wang Z.K., Lu T.J.: Bleustein-Gulyaev waves in a functionally graded piezoelectric material layered structure. Sci. China. Ser. G 52, 613–625 (2009)

    Article  Google Scholar 

  17. Cao X.S., Jin F., Wang Z.K.: On dispersion relations of Rayleigh waves in a functionally graded piezoelectric material (FGPM) half-space. Acta. Mech. 200, 247–261 (2008)

    Article  MATH  Google Scholar 

  18. Vlasie V., Rousseau M.: Guided modes in a plane elastic layer with gradually continuous acoustic properties. NDT E Int. 37, 633–644 (2004)

    Article  Google Scholar 

  19. Cao X., Jin F., Wang Z.: Theoretical investigation on horizontally shear waves in a functionally gradient piezoelectric material plate. Adv. Mater. Res. 33–37, 707–712 (2008)

    Article  Google Scholar 

  20. Wu B., Yu J., He C.: Wave propagation in non-homogeneous magneto-electro-elastic plates. J. Sound. Vib. 317, 250–264 (2008)

    Article  Google Scholar 

  21. Rose J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshan Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Shi, J. & Jin, F. Lamb wave propagation in the functionally graded piezoelectric–piezomagnetic material plate. Acta Mech 223, 1081–1091 (2012). https://doi.org/10.1007/s00707-012-0612-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0612-5

Keywords

Navigation