Skip to main content
Log in

Numerical simulation of planar shear flow passing a rotating cylinder at low Reynolds numbers

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Two-dimensional shear flow over a rotating circular cylinder is investigated using lattice Boltzmann method. Simulations are performed at a fixed blockage ratio (B = 0.1) while the Reynolds number, nondimensional shear rate (K) and absolute rotational speed range as 80 ≤ Re ≤ 180, 0 ≤ K ≤ 0.2 and −2 ≤ β ≤ 2, respectively. To verify the simulation, the results are compared to previous experimental and numerical data. Quantitative information about the flow variables such as drag and lift coefficients, pressure coefficient and vorticity distributions on the cylinders is highlighted. It is found that, generally, with the increment in |β|, the absolute value of time average lift coefficient increases and time average drag coefficient decreases, and beyond a certain magnitude of β, the vortex shedding vanishes. It is also revealed that the drag coefficient decreases as the Reynolds number increases while the effect of the Reynolds number on lift is almost negligible. At the end, correlations for drag and lift coefficients \({(\overline {C_D } ,\overline {C_L })}\) are extracted from the numerical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bretherton F.P.: Slow viscous motion round a cylinder in a simple shear. J. Fluid Mech. 12, 591–613 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  2. Robertson C.R., Acrivos A.: Low Reynolds number shear flow past a rotating circular cylinder. Part 1. Momentum transfer. J. Fluid Mech. 40, 685–704 (1970)

    Article  MATH  Google Scholar 

  3. Jordan S.K., Fromm J.E.: Laminar flow past a circle in shear flow. Phys. Fluids 15, 972–976 (1972)

    Article  Google Scholar 

  4. Kiya M., Tamura H., Arie M.: Vortex shedding from a circular cylinder in moderate-Reynolds-number shear flow. J. Fluid Mech. 141, 721–735 (1980)

    Article  Google Scholar 

  5. Kwon T.S., Sung H.J., Hyun J.M.: Experimental investigation of uniform-shear flow past a circular cylinder. ASME J. Fluids Eng. 114, 457–460 (1992)

    Article  Google Scholar 

  6. Kang S.: Uniform-shear flow over a circular cylinder at low Reynolds numbers. J. Fluids Struct. 22, 541–555 (2006)

    Article  Google Scholar 

  7. Sung H.J., Chun C.K., Hyun J.M.: Experimental study of uniform-shear flow past a rotating cylinder. Trans. ASME J. Fluids Eng. 117, 62–67 (1995)

    Article  Google Scholar 

  8. Chew Y.T., Luo S.C., Cheng M.: Numerical study of a linear shear flow past a rotating cylinder. J. Wind Eng. Ind. Aerodyn. 66, 107–125 (1997)

    Article  Google Scholar 

  9. Kang, S.: Laminar flow over a steadily rotating circular cylinder under the influence of uniform shear. Phys. Fluids 18, Art. No. 047106 (2006)

  10. Kang S., Choi H., Lee S.: Laminar flow past a rotating circular cylinder. Phys. Fluids 11, 3312–3321 (1999)

    Article  MATH  Google Scholar 

  11. Chen S., Chen H., Martinez D.O., Matthaeus W.H.: Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys. Rev. Lett. 67, 3776–3779 (1991)

    Article  Google Scholar 

  12. Qian Y.H., d’Humières D., Lallemand P.: Lattice BGK model for Navier–Stokes equation. Europhys. Lett. 17, 479–485 (1992)

    Article  MATH  Google Scholar 

  13. Chen S., Doolen G.D.: Lattice Boltzmann method for fluid flow. Ann. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  14. Fattahi E., Farhadi M., Sedighi K.: Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus. Int. J. Thermal Sci. 49, 2353–2362 (2010)

    Article  Google Scholar 

  15. Fattahi, H., Farhadi, M., Sedighi, K., Nemati, H., Pirouz, M.M.: Effect of gap-width ratio on natural convection heat transfer in horizontal annulus using LBM. Heat Trans. Res. (Accepted) (2009)

  16. Fattahi, E., Farhadi, M., Sedighi, K., Pirouz, M.M., Nemati, H.: Natural convection and entropy generation in Γ-shaped enclosure using lattice Boltzmann method. Heat Transf. Res. (Accepted) (2009)

  17. Nemati H., Farhadi M., Sedighi K., Fattahi E., Darzi A.A.R.: Lattice Boltzmann simulation of nanofluid in lid-driven cavity. Int. Comm. Heat Mass Trans. 37, 1528–1534 (2010)

    Article  Google Scholar 

  18. Boek E.S., Chin J., Coveney P.V.: Lattice Boltzmann simulation of the flow of non-Newtonian fluids in porous media. Int. J. Modern Phys. C 17, 99–102 (2003)

    Article  Google Scholar 

  19. Kuzmin A., Mohamad A.A, Succi S.: Multi-relaxation time lattice Boltzmann model for multi phase flows. Int. J. Modern Phys. C 9, 875–902 (2008)

    Article  MathSciNet  Google Scholar 

  20. Nemati H., Farhadi M., Sedighi K., Pirouz M.M., Fattahi E.: Numerical simulation of fluid flow around two rotating side by side circular cylinders by Lattice Boltzmann method. Int. J. Comput. Fluid Dyn. 24, 83–94 (2010)

    Article  MathSciNet  Google Scholar 

  21. Filippova O., Hänel D.: Grid refinement for lattice-BGK models. J. Comput. Phys. 147, 219–228 (1998)

    Article  MATH  Google Scholar 

  22. Mei R., Lou L-S., Shyy W.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. 155, 307–330 (1999)

    Article  MATH  Google Scholar 

  23. Lallemand P., Luo L.S.: Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184, 406–421 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Noble D., Torczynski J.: A lattice Boltzmann method for partially saturated computational cells. Internat. J. Modern Phys. C 9, 1189–1201 (1998)

    Article  Google Scholar 

  25. Han K., Feng Y.T., Owen D.R.J.: Coupled lattice Boltzmann and discrete element modelling of fluid-particle interaction problems. Comput. Struct. 85, 1080–1088 (2007)

    Article  Google Scholar 

  26. Feng Y.T., Han K., Owen D.R.J.: Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: Computational issues. Internat. J. Numer. Methods Eng. 72, 1111–1134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zou Q., He X.: On pressure and velocity flow boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591–1598 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu D., Mei R., Shyy W.: Improved treatment of the open boundary in the method of lattice Boltzmann equation. Prog. Comput. Fluid Dyn. 5, 1–11 (2005)

    Google Scholar 

  29. Mei R., Lou L-S., Shyy W.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys 155, 307–330 (1999)

    Article  MATH  Google Scholar 

  30. Coutanceau M., Menard C.: Influence of rotation on the near-wake development behind an impulsively started circular cylinder. J. Fluid Mech. 158, 399–466 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Fallah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fallah, K., Fardad, A., Fattahi, E. et al. Numerical simulation of planar shear flow passing a rotating cylinder at low Reynolds numbers. Acta Mech 223, 221–236 (2012). https://doi.org/10.1007/s00707-011-0561-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0561-4

Keywords

Navigation