Skip to main content
Log in

Electrical conductivity and mechanical properties of multiwalled carbon nanotube-reinforced polypropylene nanocomposites

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the electrical conductivity and mechanical properties such as elastic modulus of multiwalled carbon nanotubes (MWCNTs) reinforced polypropylene (PP) nanocomposites were investigated both experimentally and theoretically. MWCNT-PP nanocomposites samples were produced using injection mold at different injection velocities. The range of the CNT fillers is from 0 up to 12 wt%. The influence of the injection velocity and the volume fraction of CNTs on both electrical conductivity and mechanical properties of the nanocomposites were studied. The injection speed showed some effect on the electrical conductivity, but no significant influence on the mechanical properties such as elastic modulus and stress-strain relations of the composites under tensile loading. Parallel to the experimental investigation, for electrical conductivity, a percolation theory was applied to study the electrical conductivity of the nanocomposite system in terms of content of nanotubes. Both Kirkpatrick (Rev Mod Phys 45:574–588, 1973) and McLachlan et al. (J Polym Sci B 43:3273–3287, 2005) models were used to determine the transition from low conductivity to high conductivity in which designates as percolation threshold. It was found that the percolation threshold of CNT/PP composites is close to 3.8 wt%. For mechanical properties of the system, several micromechanical models were applied to elucidate the elastic properties of the nanocomposites. The results indicate that the interphase between the CNT and the polymers plays an important role in determining the elastic modulus of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirkpatrick S.: Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973)

    Article  Google Scholar 

  2. McLachlan D.S., Chiteme C., Park C., Wise K.E., Lowther S.E., Lillehei P.T., Siochi E.J., Harrison J.S.: AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J. Polym. Sci. B 43, 3273–3287 (2005)

    Article  Google Scholar 

  3. Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  4. Cho J.W., Paul D.R.: Nylon 6 nanocomposites by melt compounding. Polymer 42(3), 1083–1094 (2001)

    Article  Google Scholar 

  5. Dennis H.R., Hunter D.L., Chang D., Kim S., White J.L., Cho J.W., Paul D.R.: Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42(23), 9513–9522 (2001)

    Article  Google Scholar 

  6. Anderson, P.G.: Twin screw extrusion guidelines for compounding nanocomposites. In: Proceedings of Annual Technical Conference of the Society of Plastics Engineers, vol. 48, pp. 1–5 (2002)

  7. Dolgovskij, M.K., Fasulo, P.D., Lortie, F., Macosko, C.W., Ottaviani, R.A., Rodgers, W.R.: Effect of mixer type on exfoliation of polypropylene nanocomposites. In: Proceedings of Annual Technical Conference of the Society of Plastics Engineers, vol. 49, pp. 2255–2259 (2003)

  8. Fasulo P.D., Rodgers W.R., Ottaviani R.A., Hunter D.L.: Extrusion processing of TPO nanocomposites. Polym. Eng. Sci. 44, 1036–1045 (2004)

    Article  Google Scholar 

  9. Xia H., Wang Q., Li K., Hu G.: Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process. J. App. Polym. Sci. 93(1), 378–386 (2004)

    Article  Google Scholar 

  10. Potschke P., Kretzschmar B., Janke A.: Use of carbon nanotube filled polycarbonate in blends with montmorillonite filled polypropylene. Comp. Sci. Tech. 67, 855–860 (2007)

    Article  Google Scholar 

  11. Chen L., Pang X.-J., Yu Z.-L.: Study on polycarbonate-multiwalled carbon nanotubes composite produced by melt processing. Mater. Sci. Eng. A 457, 287–291 (2007)

    Article  Google Scholar 

  12. Yang J., Xu T., Lu A., Zhang Q., Fu Q.: Electrical properties of poly(phenylene sulfide)/multiwalled carbon nanotube composites prepared by simple mixing and compression. J. App. Polym. Sci. 109(2), 720–726 (2008)

    Article  Google Scholar 

  13. Masuda J., Torkelson J.M.: Dispersion and major property enhancements in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules 41, 5974–5977 (2008)

    Article  Google Scholar 

  14. Prashantha K., Soulestin J., Lacrampe M.F., Krawczak P., Dupin G., Claes M.: Masterbatch-based multiwalled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Comp. Sci. Tech. 69, 1756–1763 (2009)

    Article  Google Scholar 

  15. Wu D., Sun Y., Zhang M.: Kinetics study on melt compounding of carbon nanotube/polypropylene nanocomposites. J. Polym. Sci. 47, 608–618 (2009)

    Google Scholar 

  16. Pan Y., Li L., Chan S.H., Zhao J.: Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Composites A 41, 419–426 (2010)

    Article  Google Scholar 

  17. Morishita T., Matsushita M., Katagiri Y., Fukumori K.: Noncovalent functionalization of carbon nanotubes with maleimide polymers applicable to high-melting polymer-based composites. Carbon 48, 2308–2316 (2010)

    Article  Google Scholar 

  18. Lertwimolnun W., Vergnes B.: Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer 46(10), 3462–3471 (2005)

    Article  Google Scholar 

  19. Kim D., Lee J.S., Barry C.F., Mead J.L.: Evaluation and prediction of the effects of melt processing conditions on the degree of mixing in alumina/poly (ethylene terephthalate) nanocomposites. J. App. Polym. Sci. 109(5), 2924–2934 (2008)

    Article  Google Scholar 

  20. Manas-Zloczower I., Nir A., Tadmor Z.: Dispersive mixing in internal mixers. A theoretical model based on agglomerate rupture. Rubber Chem. Tech. 55, 1250–1285 (1982)

    Article  Google Scholar 

  21. Manas-Zloczower I., Nir A., Tadmor Z.: Dispersive Mixing in Roll-Mills. Polym. Compos. 6(4), 222–231 (1985)

    Article  Google Scholar 

  22. Gong X., Liu J., Baskaran S., Voise R., Young J.: Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 12, 1049–1052 (2000)

    Article  Google Scholar 

  23. Zhu J., Kim J., Peng H., Margrave J., Khabashesku V., Barrera E.: Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett. 3(8), 1107–1113 (2003)

    Article  Google Scholar 

  24. Malloy R.A.: Plastics Part Design for Injection Molding. Hanser/Gardner Publications, Cincinnati, OH (1994)

    Google Scholar 

  25. Liang G.D., Bao S.P., Tjong S.C.: Microstructure and properties of polypropylene composites filled with silver and carbon nanotube nanoparticles prepared by melt-compounding. Mater. Sci. Eng. B 147, 55–61 (2007)

    Article  Google Scholar 

  26. Hwa So H., Cho J.W., Sahoo N.G.: Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. Eur. Polym. J. 43, 3750–3756 (2007)

    Article  Google Scholar 

  27. Mamunya Y., Boudenne A., Lebovka N., Ibos L., Candau Y., Lisunova M.: Electrical and thermophysical behavior of PVC-MWCNT nanocomposites. Comp. Sci. Tech. 68, 1981–1988 (2008)

    Article  Google Scholar 

  28. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. Ser. A 241, 376–396 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hill R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 189–198 (1965)

    Article  Google Scholar 

  30. Budiansky B., O’Connell R.J.: Elastic moduli of a cracked solid. Int. J. Solids Struct. 12, 81–97 (1976)

    Article  MATH  Google Scholar 

  31. Hoenig A.: Elastic moduli of a non-randomly cracked body. Int J. Solids Struct. 15, 137–154 (1979)

    Article  MATH  Google Scholar 

  32. Laws N., Brockenbrough J.R.: The effect of microcrack systems on loss of stiffness of brittle solids. Int. J. Solids. Struct. 23, 1247–1268 (1987)

    Article  Google Scholar 

  33. Laws N., Dvorak G.J.: The effect of fiber breaks and aligned penny-shaped cracks on the stiffness and energy release rates in unidirectional composites. Int. J. Solids Struct. 23, 1269–1283 (1987)

    Article  Google Scholar 

  34. Christensen R.M., Lo K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315–330 (1979)

    Article  MATH  Google Scholar 

  35. Huang Y., Hu K.X., Chandra A.: A generalized self-consistent mechanics method for microcracked solids. J. Mech. Phys. Solids 42, 1273–1291 (1994)

    Article  MATH  Google Scholar 

  36. Huang Y., Chandra A., Jiang Z.Q., Wei X., Hu K.X.: The numerical calculation of two-dimensional effective moduli for microcracked solids. Int. J. Solids Struct. 33, 1575–1586 (1994)

    Article  Google Scholar 

  37. Salganik R.L.: Mechanics of bodies with many cracks. J. Mech. Phys. Solids 8, 135–143 (1973)

    Google Scholar 

  38. Norris A.N.: A differential method for the effective moduli of composites. Mech. Mater. 4, 1–16 (1985)

    Article  Google Scholar 

  39. Zimmerman R.W.: The effect of microcracks on the elastic moduli of brittle materials. J. Mater. Sci. Lett. 4, 1457–1460 (1985)

    Article  Google Scholar 

  40. Zimmerman R.W.: Elastic moduli of a solid containing spherical inclusions. Mech. Mater. 12, 17–24 (1991)

    Article  Google Scholar 

  41. Hashin Z.: The differential method and its application to cracked materials. J. Mech. Phys. Solids 36, 719–734 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  42. Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  43. Weng G.J.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22, 845–856 (1984)

    Article  MATH  Google Scholar 

  44. Weng G.J.: The theoretical connection between Mori–Tanaka’s theory and the Hashin–Shtrikman–Walpole bounds. Int. J. Eng. Sci. 28, 1111–1120 (1990)

    Article  MATH  Google Scholar 

  45. Shen L., Li J.: Effective elastic moduli of composites reinforced by particle or fiber with an inhomogeneous interphase. Int. J. Solids Struct. 40, 1393–1409 (2003)

    Article  MATH  Google Scholar 

  46. Shen L., Li J.: Homogenization of a fiber/sphere with an inhomogeneous interphase for the effective elastic moduli of composites. Proc. Roy. Soc. A 461, 1475–1504 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngabonziza, Y., Li, J. & Barry, C.F. Electrical conductivity and mechanical properties of multiwalled carbon nanotube-reinforced polypropylene nanocomposites. Acta Mech 220, 289–298 (2011). https://doi.org/10.1007/s00707-011-0486-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0486-y

Keywords

Navigation