Skip to main content
Log in

On the thermodynamically consistent fractional wave equation for viscoelastic solids

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Since the well-known methods for the computation of harmonically induced LAMB waves in elastic plates cannot be applied directly to viscoelastic material, an enhanced material model is developed. It is based on fractional time derivatives and incorporates a fractional KELVIN–VOIGT model. A proof of the thermodynamic consistency of this model is given. On the basis of the developed material model, the fractional wave equation is derived which allows for the calculation of LAMB waves in viscoelastic solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenbach J., Altenbach H.: Einführung in die Kontinuumsmechanik. B. G. Teubner, Stuttgart (1994)

    Google Scholar 

  2. Beyer H., Kempfle S.: Physically consistent damping laws. ZAMM 75(8), 623–635 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Breuer S., Onat E.T.: On the determination of free energy in linear viscoelastic solids. ZAMP 15, 184–191 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calomfirescu, M.: Lamb Waves for Structural Health Monitoring in Viscoelastic Composite Materials. PhD thesis, Universität Bremen (2008)

  5. Caputo M., Mainardi F.: Linear models of dissipation in anelastic solids. Rivista del Nuovo Cimento 1(2), 161–198 (1971)

    Article  Google Scholar 

  6. Del Piero G., Deseri L.: On the analytic expression of the free energy in linear viscoelasticity. J. Elast. 43, 247–278 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Del Piero G., Deseri L.: On the concepts of state and free energy in linear viscoelasticity. Arch. Ration. Mech. Anal. 138, 1–35 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deseri L., Gentili G., Golden M.: An explicit formula for the minimum free energy in linear viscoelasticity. J. Elast. 54, 141–185 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ende, S.v.: Transient Induced Lamb Waves in Elastic and Viscoelastic Plates—Modelling and Experimental Verification. PhD thesis, Helmut-Schmidt University Hamburg (2008)

  10. Ende S.v., Lammering R.: Investigation on piezoelectrically induced lamb wave generation and propagation. Smart Mater. Struct. 16, 1802–1809 (2007)

    Article  Google Scholar 

  11. Ende, S.v., Lammering, R.: Piezoelectrically generated lamb waves in elastic and viscoelastic plates—analysis and experimental verification. In: Proceedings of the 7th International Workshop on Structural Health Monitoring. (2009)

  12. Ende S.v., Schäfer I., Lammering R.: Lamb wave excitation with piezoelectric wafers—an analytical approach. Acta Mech. 193, 141–150 (2007)

    Article  MATH  Google Scholar 

  13. Giurgiutiu V.: Tuned lamb wave excitation and detection with piezoelectric wafer active sensors fo structural health monitoring. J. Intell. Mater. Syst. Struct. 16, 291–305 (2005)

    Article  Google Scholar 

  14. Gurtin M.E., Hrusa W.J.: On energies for nonlinear viscoelastic materials of single-integral type. Q. Appl. Math. XLVI, 381–392 (1988)

    MathSciNet  Google Scholar 

  15. Gurtin M.E., Hrusa W.J.: On thermodynamics of viscoelastic materials of single-integral type. Q. Appl. Math. XLIX, 67–85 (1991)

    MathSciNet  Google Scholar 

  16. Hanyga A.: Viscous dissipation and completely monotonic relaxation moduli. Rheol. Acta 44(6), 614–621 (2005)

    Article  Google Scholar 

  17. Hanyga A.: Fractional-order relaxation laws in non-linear viscoelasticity. Contin. Mech. Thermodyn. 19, 25–36 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hanyga A., Seredynska M.: Multiple-integral viscoelastic constitutive equations. Int. J. Non linear Mech. 42(5), 722–732 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee B.C., Staszewski W.J.: Sensor location studies for damage detection with lamb waves. Smart Mater. Struct. 16, 399–408 (2007)

    Article  Google Scholar 

  20. Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  21. Lion A.: On the thermodynamics of fractional damping elements. Contin. Mech. Thermodyn. 9(2), 83–96 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  23. Park H.W., Sohn H., Law K.H., Farrar C.R.: Time reversal active sensing for health monitoring of a composite plate. J. Sound Vib. 302(2), 55–66 (2004)

    Google Scholar 

  24. Raghavan A., Cesnik C.E.S.: Modeling of piezoelectric-based lamb-wave generation and sensing for structural health monitoring. J. Proc. SPIE Smart Struct. Mater. 5391, 419–430 (2004)

    Google Scholar 

  25. Ranz, T.: Viskoelastisches Materialmodell für Holz. PhD thesis, Universität der Bundeswehr (2008)

  26. Rose J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  27. Ross B.: Fractional Calculus and its Applications. Springer, Berlin (1974)

    Google Scholar 

  28. Schäfer, I.: Fraktionale Zeitableitungen zur Beschreibung viskoelastischen Materialverhaltens. PhD thesis, Helmut Schmidt Universität (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven von Ende.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Ende, S., Lion, A. & Lammering, R. On the thermodynamically consistent fractional wave equation for viscoelastic solids. Acta Mech 221, 1–10 (2011). https://doi.org/10.1007/s00707-011-0484-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0484-0

Keywords

Navigation