Skip to main content
Log in

A non-classical Mindlin plate model based on a modified couple stress theory

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A non-classical Mindlin plate model is developed using a modified couple stress theory. The equations of motion and boundary conditions are obtained simultaneously through a variational formulation based on Hamilton’s principle. The new model contains a material length scale parameter and can capture the size effect, unlike the classical Mindlin plate theory. In addition, the current model considers both stretching and bending of the plate, which differs from the classical Mindlin plate model. It is shown that the newly developed Mindlin plate model recovers the non-classical Timoshenko beam model based on the modified couple stress theory as a special case. Also, the current non-classical plate model reduces to the Mindlin plate model based on classical elasticity when the material length scale parameter is set to be zero. To illustrate the new Mindlin plate model, analytical solutions for the static bending and free vibration problems of a simply supported plate are obtained by directly applying the general forms of the governing equations and boundary conditions of the model. The numerical results show that the deflection and rotations predicted by the new model are smaller than those predicted by the classical Mindlin plate model, while the natural frequency of the plate predicted by the former is higher than that by the latter. It is further seen that the differences between the two sets of predicted values are significantly large when the plate thickness is small, but they are diminishing with increasing plate thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  2. McFarland A.W., Colton J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  3. Lazopoulos K.A.: On the gradient strain elasticity theory of plates. Euro. J. Mech. A Solids 23, 843–852 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Altan B.S., Aifantis E.C.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997)

    Article  Google Scholar 

  5. Gao X.-L., Park S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)

    Article  MATH  Google Scholar 

  6. Gao X.-L., Ma H.M.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58, 779–797 (2010)

    Article  MathSciNet  Google Scholar 

  7. Papargyri-Beskou S., Beskos D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625–635 (2008)

    Article  MATH  Google Scholar 

  8. Papargyri-Beskou S., Giannakopoulos A.E., Beskos D.E.: Variational analysis of gradient elastic flexural plates under static loading. Int. J. Solids Struct. 47, 2755–2766 (2010)

    Article  MATH  Google Scholar 

  9. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  10. Lu P., Zhang P.Q., Lee H.P., Wang C.M., Reddy J.N.: Non-local elastic plate theories. Proc. R. Soc. A 463, 3225–3240 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tsiatas G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)

    Article  MATH  Google Scholar 

  12. Jomehzadeh E., Noori H.R., Saidi A.R.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Phys. E 43, 877–883 (2011)

    Article  Google Scholar 

  13. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  14. Park S.K., Gao X.-L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59, 904–917 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lazopoulos K.A.: On bending of strain gradient elastic micro-plates. Mech. Res. Commun. 36, 777–783 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li S.: On the micromechanics theory of Reissner–Mindlin plates. Acta Mech. 142, 47–99 (2000)

    Article  MATH  Google Scholar 

  17. Li S.: The micromechanics theory of classical plates: a congruous estimate of overall elastic stiffness. Int. J. Solids Struct. 37, 5599–5628 (2000)

    Article  MATH  Google Scholar 

  18. Park S.K., Gao X.-L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  19. Ma H.M., Gao X.-L., Reddy J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ma H.M., Gao X.-L., Reddy J.N.: A non-classical Reddy–Levinson beam model based on a modified couple stress theory. Int. J. Multiscale Comput. Eng. 8, 167–180 (2010)

    Article  Google Scholar 

  21. Mindlin R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  22. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  23. Koiter W.T.: Couple-stresses in the theory of elasticity. Proc. K. Ned. Akad. Wet. B 67, 17–44 (1964)

    MATH  Google Scholar 

  24. Timoshenko S.P., Goodier J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  25. Horgan C.O.: On the strain-energy density in linear elasticity. J. Eng. Math. 7, 231–234 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fung Y.C., Tong P.: Classical and Computational Solid Mechanics. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  27. Chong A.C.M., Yang F., Lam D.C.C., Tong P.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16, 1052–1058 (2001)

    Article  Google Scholar 

  28. Nikolov S., Han C.-S., Raabe D.: On the origin of size effects in small-strain elasticity of solid polymers. Int. J. Solids Struct. 44, 1582–1592 (2007)

    Article  MATH  Google Scholar 

  29. Reddy J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  30. Reddy J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. Taylor & Francis, Philadelphia (2007)

    Google Scholar 

  31. Gao X.-L., Mall S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38, 855–874 (2001)

    Article  MATH  Google Scholar 

  32. Stephen N.G.: Mindlin plate theory: best shear coefficient and higher spectra validity. J. Sound Vib. 202, 539–553 (1997)

    Article  Google Scholar 

  33. Wang C.M., Lim G.T., Reddy J.N., Lee K.H.: Relationships between bending solutions of Reissner and Mindlin plate theories. Eng. Struct. 23, 838–849 (2001)

    Article  Google Scholar 

  34. Liu Y., Soh C.-K.: Shear correction for Mindlin type plate and shell elements. Int. J. Numer. Meth. Eng. 69, 2789–2806 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Batista M.: An elementary derivation of basic equations of the Reissner and Mindlin plate theories. Eng. Struct. 32, 906–909 (2010)

    Article  Google Scholar 

  36. Mindlin R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. ASME J. Appl. Mech. 18, 1031–1036 (1951)

    Google Scholar 

  37. Maneschy C.E., Miyano Y., Shimbo M., Woo T.C.: Residual-stress analysis of an epoxy plate subjected to rapid cooling on both surfaces. Exp. Mech. 26, 306–312 (1986)

    Article  Google Scholar 

  38. Cooke D.W., Levinson M.: Thick rectangular plates–II: the generalized Lévy solution. Int. J. Mech. Sci. 25, 207–215 (1983)

    Article  MATH  Google Scholar 

  39. Kabir H.R.H., Chaudhuri R.A.: Boundary-continuous Fourier solution for clamped Mindlin plates. ASCE J. Eng. Mech. 118, 1457–1467 (1992)

    Article  Google Scholar 

  40. Naumenko K., Altenbach J., Altenbach H., Naumenko V.K.: Closed and approximate analytical solutions for rectangular Mindlin plates. Acta Mech. 147, 153–172 (2001)

    Article  MATH  Google Scholar 

  41. Batista M.: Refined Mindlin–Reissner theory of forced vibrations of shear deformable plates. Eng. Struct. 33, 265–272 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. -L. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H.M., Gao, X.L. & Reddy, J.N. A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech 220, 217–235 (2011). https://doi.org/10.1007/s00707-011-0480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0480-4

Keywords

Navigation