Skip to main content
Log in

Environmentally motivated modeling of hygro-thermally induced stresses in the layered limestone masonry structures: Physical motivation and numerical modeling

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present paper, environmentally motivated numerical modeling for the limestone layered masonry structures has been investigated involving the continuous hygric state field variable, i.e. relative humidity Π. By taking advantage of the Lin et al. assumption pertaining to the relative humidity (independency of the relative humidity and temperature) (Lin MW et al. Build. Environ. 41(5):646–656, (2006); Khoshbakht M et al. Finite Elem. Anal. Des. 42(5):414–429, (2006); Khoshbakht M, Lin MW Meas. Sci. Technol 2989–2996, (2006); Khoshbakht M Finite Elem. Anal. Des., 45(8–9):511–518, (2009)), we have provided a mathematical model involving hygro-thermo-mechanical aspects as well as the water vapor transfer across the porous limestone masonry walls. The numerical study substantiates the impact of hygric effects as the major key point in the thermo-hygro-mechanical degradation and effect of geometry in the real brick-line of mortar assembly. Furthermore, we have obtained the moisture entrapment at the intersection of the lines of mortar through the layered masonry wall by means of the multidisciplinary nonlinear finite element method (NFEM) for variably saturated porous media. The new outlooks and fresh departure in durability and aging have been briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({\bar{T}_0=273.15}\) :

Fixed reference temperature in [K]

λ:

First Lamé’s constant in [Pa or N/m2]

Λ g :

Gas degree of saturation in [m3/m3]

\({\mathfrak{K}_s}\) :

Intrinsic permeability or absolute permeability and dynamic viscosity in [m2]

μ :

Second Lamé’s constant in [Pa or N/m2]

ν :

Poisson’s ratio in [−]

Φ g :

Gas porosity in [m3/m3]

\({\rho^{\mathcal {H}_l}}\) :

Liquid water density in [kg/m3]

\({\rho^{\mathcal {H}_{sv}}}\) :

Saturated water vapor density in [kg/m3]

ρ s :

Solid mass density in [kg/m3]

τ :

Tortuosity in [m/m]

Θ0 :

Reference or initial volumetric moisture content in \({\left[\frac{{\rm m}^3}{{\rm m}^3}\right]}\)

A :

Mass uptake coefficient in \({[{\rm kg/m}^2/\sqrt{{\rm Sec.}}]}\)

B :

Visible water level uptake coefficient in \({[{\rm m}/\sqrt{{\rm Sec.}}]}\)

c :

Coefficient of molecular diffusivity of water vapor into air in [m2/Sec.]

\({C^{\mathcal{P}}}\) :

Specific heat capacity at constant pressure in [J/kg/K]

\({C^{\mathcal{V}}}\) :

Specific heat capacity at constant volume in [J/kg/K]

\({C^{{\mathcal{P}}_l}}\) :

Specific heat capacity of liquid water at constant pressure in [J/kg/K]

\({C^{{\mathcal{P}}_v}}\) :

Specific heat capacity of water vapor at constant pressure in [J/kg/K]

D a :

Molecular diffusivity of water vapor into air in [kg/m3]

E :

Modulus of elasticity in [Pa or N/m2]

\({E^\parallel}\) :

Tuffeau modulus of elasticity along parallel direction to the sedimentary bed in [MPa]

\({E^\perp}\) :

Tuffeau modulus of elasticity along normal direction to the sedimentary bed in [MPa]

g :

Gravity acceleration in [m/Sec.2 or N/kg]

h fg (T):

Latent heat (entropy) of vaporization in [J/kg]

K :

Bulk modulus in [Pa or N/m2]

\({k^{\mathcal{T}_{\rm dry}}}\) :

Dry thermal conductivity coefficient in [W/m/K]

\({k^{\mathcal{T}_{\rm psat}}}\) :

Partially saturated thermal conductivity coefficient in [W/m/K]

\({k^{\mathcal{T}_{\rm sat}}}\) :

Fully saturated thermal conductivity coefficient in [W/m/K]

K s :

Permeability coefficient of a saturated porous body in [m/Sec.]

L f :

Latent heats of fusion in [J/kg]

n 0 :

Exponent coefficient of molecular diffusivity of water vapor into air in [−]

P 0 = 101.325:

Reference pressure in [kPa]

\({R^{\mathcal{H}_l}}\) :

Water gas constant in [J/kg/K]

T 0 :

Reference or initial temperature in [K]

\({{\sigma_c}^\parallel}\) :

Compressive strength along normal direction to the sedimentary bed in [MPa]

\({{\sigma_c}^\perp}\) :

Compressive strength along normal direction to the sedimentary bed in [MPa]

\({\mathbb{M}^{3\times3}}\) or \({\mathbb{R}^3 \times \mathbb{R}^3}\) :

Set of real 3 ×  3 second-rank tensors

\({\mathbb{N}}\) :

Natural set

\({\mathbb{R}}\) :

Real set

\({\mathbb{R}^+}\) :

Real positive set

\({\mathbb{R}^-}\) :

Negative real set

\({\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3}\) :

Set of real fourth-rank tensors

\({\beta^{\mathcal{C}}}\) :

Chemical-induced second-rank stress tensor in [Pa or N/m2]

\({\beta^{\mathcal{H}}}\) :

Moisture-induced second-rank stress tensor in [Pa or N/m2]

\({\beta^{\mathcal{M}_p}}\) :

Plastic-induced second-rank stress tensor in [Pa or N/m2]

\({\beta^{\mathcal{T}}}\) :

Thermal-induced second-rank stress tensor in [Pa or N/m2]

\({\epsilon:={\rm sym} \nabla \otimes u={\rm sym} \nabla u}\) :

Total infinitesimal strain in [−]

\({\hat{\epsilon}}\) :

First-order strain tensor approximation in [−]

\({{1\!\!\!\:1 }:=\delta_{ij}\hat{e}_i \otimes \hat{e}_j}\) :

Identity matrix in [−]

\({\nabla \otimes u:=\nabla u=u_{j,i}\hat{e}_i \otimes \hat{e}_j}\) :

Displacement gradient in [−]

σ :

Symmetric stress tensor in [Pa or N/m2]

\({\tt{F}}\) :

Gradient deformation tensor in [−]

\({\tt{F}^{\mathcal{C}}}\) :

Decomposed gradient deformation tensor indicating chemical-based stretch in [−]

\({\tt{F}^{\mathcal{H}}}\) :

Decomposed gradient deformation tensor indicating hygric stretch in [−]

\({\tt{F}^{\mathcal{M}_e}}\) :

Decomposed gradient deformation tensor indicating elastic stretch in [−]

\({\tt{F}^{\mathcal{M}_p}}\) :

Decomposed gradient deformation tensor indicating plastic stretch in [−]

\({\tt{F}^{\mathcal{T}}}\) :

Decomposed gradient deformation tensor indicating thermal stretch in [−]

ξ :

Tensor of relative humidity swelling coefficient in [−]

A :

Initial symmetric stress tensor in [Pa or N/m2]

F(ΔΠ):

Relative humidity swelling expansion function in [−]

G(ΔΘ):

Moisture swelling expansion function in [−]

\({k^{\mathcal {H}_l}}\) :

Tensor of hydraulic conductivity coefficient in [m2/Pa/Sec.]

\({k^{\mathcal {H}_l}(P)}\) :

Tensor of hydraulic conductivity coefficient as a function of liquid water pressure in [m2/Pa/Sec.]

\({k^{\mathcal{T}^*}}\) :

Thermal conductivity tensor coefficient with no moisture Movement in [W/m/K]

\({k^{\mathcal{T}}}\) :

Thermal conductivity tensor coefficient in [W/m/K]

\({L:=v_{i,j}\, \hat{e}_i \otimes \hat{e}_j}\) :

Asymmetric velocity gradient tensor in [1/Sec.]

X and Y :

Arbitrary second-rank tensors

\({{\alpha}^{\mathcal{T}}}\) :

Tensor of thermal expansion coefficient in [1/K]

\({{\epsilon}^{\mathcal{C}_{\rm cryst}}}\) :

Crystallization strains made by the crystallization pressure in [−]

\({{\epsilon}^{\mathcal{C}_{\rm diss}}}\) :

Dissolution-based strain in [−]

\({{\epsilon}^{\mathcal{C}_{\rm exo}}}\) :

Exothermic strain in [−]

\({{\epsilon}^{\mathcal{C}_{\rm leach}}}\) :

Calcium leaching strain in [−]

\({{\epsilon}^{\mathcal{C}}}\) :

Chemical-based strain in [−]

\({{\epsilon}^{\mathcal{H}}}\) :

Moisture-induced strain or hygric strain in [−]

\({{\epsilon}^{\mathcal{M}_e}}\) :

Elastic strain in [−]

\({{\epsilon}^{\mathcal{M}_p}}\) :

Plastic strain in [−]

\({{\epsilon}^{\mathcal{T}}}\) :

Thermal strain in [−]

\({{\zeta}^{\mathcal{T}}}\) :

Tensor of moisture swelling expansion coefficient in [−]

ΔM :

Uptake mass during water uptake phenomenon or liquid water imbibition in [kg]

\({\dot{Q}}\) :

Heat source/sink rate in [J or N.m]

\({\dot{W}}\) :

Work done rate by control volume in [J or N.m]

η(T):

Dynamic viscosity in terms of temperature in [Pa.Sec.]

\({\hat{\Pi}}\) :

First-order relative humidity approximation in [−]

\({\hat{T}}\) :

First-order temperature approximation in [K]

Λ:

Degree of saturation in [−]

\({\mathfrak{b}}\) :

Fluid body force scalar potential function in [N/m2]

\({\mathfrak{C}(\Delta \Pi)}\) :

Isotropic chemical strain function in [−]

\({\mathfrak{H}(\Delta \Pi)}\) :

Isotropic hygric strain function in [−]

Φ:

Capillary porosity in [−]

Π:

Relative humidity in [−]

ψ :

Matric head or hydraulic head in [m]

ρcT :

Volumetric internal energy in [J/m3]

\({\rho^{\mathcal {H}_v}}\) :

Vapor density in [kg/m3]

ρ s e :

Internal energy per volume involving the moisture migration in [J/m3]

\({\sigma^{\mathcal{H}_l}}\) :

Surface tension of liquid water in [N/m]

\({\tt{h}}\) :

Visible water uptake level in [m]

Θ:

Volumetric moisture content or so-called moisture content in \({[\frac{{\rm m}^3}{{\rm m}^3}]}\)

\({\Theta^{\mathcal {H}_l}}\) :

Volumetric liquid water content or volumetric moisture content in [m3/m3]

\({\Theta^{\mathcal {H}_v}}\) :

Volumetric water vapor content in [m3/m3]

\({\varrho e}\) :

Volumetric internal energy in [J/m3]

\({\varrho Q}\) :

Heat source/sink in [J/m3]

\({\varrho S}\) :

Fluid source/sink in [kg/m3]

\({\varrho}\) :

Fluid density in [kg/m3]

A 0 :

Initial strain energy density in [J/m3 or N.m/m3]

k r (Λ):

Relative permeability in [−]

N(x 1, x 2, x 3):

Quadratic iso-parametric shape function in [−]

P :

Matric suction or liquid pressure in [N/m2]

P v :

Air-water vapor mixture pressure or so-called water vapor pressure in [Pa]

Q Diff :

Diffusion-induced heat source or sink in [J/m3]

Q Exo :

Exothermic heat source or sink in [J/m3]

Q Reac :

Chemical reaction-induced heat source or sink in [J/m3]

Q So/Si :

Heat source or sink in [J/m3]

\({S^{\mathcal {H}_l}}\) :

Liquid source in the considered control volume in [kg/Sec./m3]

\({S^{\mathcal {H}_v}}\) :

Liquid source condensation in the considered control volume in [kg/Sec./m3]

T :

Temperature function in [K]

\({T^{\mathcal{SP}}}\) :

Temperature for a single gas-filled pore in [K]

\({V^{\mathcal {H}_l}}\) :

Liquid water volume in [m3]

\({V^{\mathcal {H}_v}}\) :

Vapor volume in [m3]

\({W_{\tt{mp}} \left(\epsilon^{\mathcal{M}_e}\right)}\) :

Strain energy density in [J/m3 or N.m/m3]

\({{\bar{\nu}}^{\mathcal{H}_l}}\) :

Kinematic viscosity of liquid water in [?]

\({\rho^{\mathcal {H}_l} v^{\mathcal {H}_l}}\) :

Liquid water flux in [kg/m2/Sec.]

\({\rho^{\mathcal {H}_v} v^{\mathcal {H}_v}}\) :

Water vapor flux in [kg/m2/Sec.]

\({\rho^{\mathcal{H}_l} {\hat{v}}^{\mathcal{H}_l}+\rho^{\mathcal{H}_l}{\hat{v}}^{\mathcal{H}_l}}\) :

First-order moisture flux vector approximation in [kg/m2/Sec.]

ρ s b :

Body force in [N/m3]

ρ s f :

Body inertia in [N/m3]

υ :

Fluid flow velocity in [m/Sec.]

υ rel :

Relative velocity in [m/Sec.]

\({\varrho b}\) :

Fluid body force in [N/m3]

a, b and x :

Arbitrary vectors

H :

Potential gradient vector indicating the gravitational effects in [Pa/m or N/m3]

n :

Outward unit normal vector in [−]

\({q^{\mathcal{T}}}\) :

Heat flux rate including the moisture migration hypothesis in [W/m2]

t (n) := σ T · n :

Surface traction or stress vector in [Pa or N/m2]

u :

Displacement vector in [m]

\({V^{\mathcal {H}_l}}\) :

Darcy’s law macro-scale velocity of liquid water in [m/Sec.]

\({V^{\mathcal {H}_v}}\) :

Macro-scale velocity of water vapor in [m/Sec.]

\({{\hat{q}}^{\mathcal{T}}}\) :

First-order heat flux vector approximation in [W/m2]

υ cv :

Control volume velocity in [m/Sec.]

References

  1. Lin M.W., Berman J.B., Khoshbakht M., Feickert C.A., Abatan A.O.: Modeling of moisture migration in an frp reinforced masonry structure. Build. Environ. 41, 646–656 (2006)

    Article  Google Scholar 

  2. Khoshbakht M., Lin M.W., Berman J.B.: Analysis of moisture-induced stresses in an frp composites reinforced masonry structure. Finite Elem. Anal. Des. 42, 414–429 (2006)

    Article  Google Scholar 

  3. Khoshbakht M., Lin M.W.: Development of an electrical time domain reflectometry (etdr) distributed moisture measurement technique for porous media. Meas. Sci. Technol. 17, 2989–2996 (2006)

    Article  Google Scholar 

  4. Khoshbakht M., Lin M.W., Feickert C.A.: A finite element model for hygrothermal analysis of masonry walls with frp reinforcement. Finite Elem. Anal. Des. 45, 511–518 (2009)

    Article  Google Scholar 

  5. Rautureau, M., Pierre, G., Hartmann, C.: Tendre comme la pierre: Monuments en tuffeau guide pour la restauration et l’entretien. Conseil Régional du Centre-Université d’Orléans (1991). (In French)

  6. Dessandier, D.:Étude du milieu poreux et des propriétś de transfert des fluides du tuffeau blanc de Touraine. Application à la durabilité des pierres en œuvres. PhD thesis, Université de Tours (1995). (In French)

  7. Dessandier, D., Gaboriau, H.: Contribution à la modélisation des mécanismes d’altération des pierres en oeuvre sur la cathédrale saint-gatien de tours—relations entre structure du milieu poreux et propriétés de transfert des fluides. Rapport brgm r9999, BRGM, Orléans (1996). (In French)

  8. Dessandier D., Bromblet P., Mertz J.-D.: Durability of tuffeau stone in buildings: Influence of mineralogical composition and microstructural properties. In: Fassina, V. (eds) Proceedings of the 9th International Congress on Deterioration and Conservation of Stone, pp. 69–78. Elsevier Science B.V., Amsterdam (2000)

    Chapter  Google Scholar 

  9. Laurent, J.P.: Simulation des transferts d’eau dans le tuffeau de la cathédrale de tours. Rapport d’avancement-programme franco-allemand de recherche pour la conservation des monuments historiques, Laboratoire d’étude des Transferts en Hydrologie et Environnement (1996). (In French)

  10. Laurent, J.P.: Modelling water and heat transfers in stones under climatic influences : physical basis. In: 8th International Congress on the Deterioration of stone, Berlin, 30 September-4 November (1996)

  11. Chéné, G., Bastian, G., Brunjai, C., Laurent, J.P.: Accelerating weathering of tuffeau blocks submitted to wetting-drying cycles. Mater. Struct. 32, 525–532 August (1999). (In French)

    Google Scholar 

  12. Brunet-Imbault, B.: Étude des patines de pierres calcaires mises en oeuvre en Région Centre. Caractérisation de l’évolution de la minéralogie et du milieu poreux. Effets comparés de différents nettoyages. PhD thesis, Université d’Orléans, October (1999). (In French)

  13. Letellier M., Brunet-Imbault B., Mariez S., Prigent S.: Diffusion macroscopique dans un tuffeau et un alginate, mesure irmmacroscopic diffusion in a limestone and in an alginate as measured by mri. C. R. Acad. Sci. Ser. IIC Chem. 4, 863–867 (2001)

    Google Scholar 

  14. Derbez, M.: Rôle des apports atmosphériques dans l’altération de calcaires tendres en environnement urbain: La Cathédrale de Tours. PhD thesis, Université de Paris 12, Créteil (1999). (In French)

  15. Obeid W., Mounajed G., Alliche A.: Mathematical formulation of thermo-hygro-mechanical coupling problem in non-saturated porous media. Comput. Methods Appl. Mech. Eng. 190, 5105–5122 (2000)

    Article  Google Scholar 

  16. Deru, M.: A model for ground-coupled heat and moisture transfer from buildings. Technical Report NREL/TP-550-33954, National Renewable Energy Laboratory, 1617 Cole Boulevard Golden, Colorado 80401–3393, June (2003)

  17. Mendes N., Philippi P.C., Lamberts R.: A new mathematical method to solve highly coupled equations of heat and mass transfer in porous media. Int. J. Heat Mass Transf. 45, 509–518 (2002)

    Article  MATH  Google Scholar 

  18. Mendes N., Philippi P.C.: A method for predicting heat and moisture transfer through multilayered walls based on temperature and moisture content gradients. Int. J. Heat Mass Transf. 48, 37–51 (2005)

    Article  MATH  Google Scholar 

  19. Ricardo, C.L.F., Oliveira, N.M., dos Santos, G.H.: Energy efficiency and thermal comfort analysis using the powerdomus hygrothermal simulation tool. In: 9th International IBPSA Conference. Building Simulation 2005, 15–18 August, Montral, Canada (2005)

  20. Bader T., Hofstetter K., Hellmich C., Eberhardsteiner J.: The poroelastic role of water in cell walls of the hierarchical composite softwood. Acta. Mech. 217, 75–100 (2010). doi:10.1007/s00707-010-0368-8

    Article  Google Scholar 

  21. Pesavento F., Gawin D., Schrefler B.: Modeling cementitious materials as multiphase porous media: theoretical framework and applications. Acta. Mech. 201, 313–339 (2008). doi:10.1007/s00707-008-0065-z

    Article  MATH  Google Scholar 

  22. Jeong J., Ramézani H.: Enhanced numerical study of infinitesimal non-linear cosserat theory based on the grain size length scale assumption. Comput. Methods Appl. Mech. Eng. 199, 2892–2902 (2010)

    Article  Google Scholar 

  23. Kumar R., Kothari S., Mukhopadhyay S.: Some theorems on generalized thermoelastic diffusion. Acta. Mech. 217, 287–296 (2010). doi:10.1007/s00707-010-0401-y

    Article  Google Scholar 

  24. Elhagary, M.: Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times. Acta Mech. 1–11 (2010). doi:10.1007/s00707-010-0415-5

  25. De Freitas V.P., Abrantes V., Crausse P.: Moisture migration in building walls–analysis of the interface phenomena. Build. Environ. 31, 99–108 (1996)

    Article  Google Scholar 

  26. Solin P.: Partial Differential Equations and the Finite Element Method. John Wiley and Sons, Inc., Hoboken, New Jersey (2006)

    Google Scholar 

  27. Kowalski S.J., Strumillo C.: Moisture transport, thermodynamics, and boundary conditions in porous materials in presence of mechanical stresses. Chem. Eng. Sci. 52, 1141–1150 (1997)

    Article  Google Scholar 

  28. Bear, J., Bachmat, Y.: Introduction to Modeling Transport Phenomena in Porous Media. In: Theory and Applications of Transport in Porous Media, vol. 4, 584 p, Hardcover. Kluwer Acad, Dordrecht (1990) ISBN: 978-0-7923-0557-6

  29. Hillel D.: Environmental Soil Physics. CA: Academic Press, San Diego (1998)

    Google Scholar 

  30. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Fort Collins (1964)

  31. van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  32. Philip J.R., de Vries D.A.: Moisture movement in porous coupled heat and water materials under temperature gradients. Trans. Am. Geophys. Union 38, 222–232 (1957)

    Google Scholar 

  33. de Vries D.A.: Heat Transfer in Soils. Heat and Mass Transfer in the Biosphere, Part 1 Transfer Processes in the Plant Environment. John Wiley and Sons, New York (1975)

    Google Scholar 

  34. Nakano N., Miyazako T.: The diffusion and non-equilibrium thermodynamic equations of water vapour in soils under temperature gradients. Soil Sci. 128, 184–188 (1979)

    Article  Google Scholar 

  35. De Vries D.A.: The theory of heat and moisture transfer in porous media revisited. Int. J. Heat Mass Transf. 30, 1343–1350 (1987)

    Article  Google Scholar 

  36. Coussy O.: Poromechanics. 2nd edn. John Wiley and Sons Ltd, Chichester (2004) ISBN: 0-470-84920-7

    Google Scholar 

  37. Wu H.-C.: Continuum Mechanics and Plasticity. Hall/CRC Press, Chapman (2005)

    MATH  Google Scholar 

  38. Saad M.H.: Elasticity: Theory, Application and Numerics. Elsevier, Butterworth-Heinemann (2005)

    Google Scholar 

  39. Jury, W.A.: Simultaneous Transport of Heat and Moisture Through a Medium Sand. PhD thesis, University of Wisconsin, Madison, WI, (1973)

  40. Jury W.A., Miller E.E.: Measurement of the transport coefficients for coupled flow of heat and moisture in a medium sand. Soil Sci. Soc. Am. J. 38, 551–557 (1974)

    Article  Google Scholar 

  41. Jeong, J., Adib-Ramezani, H., Mertz, J.D., Beck, K., Al-Mukhtar, M.: Approche numérique de la compatibilité pierre-mortier. In: AUGC2008, editor, XXVIe Rencontres Universitaires de Génie Civil, Nancy-France, 4–6 June (2008). (In French)

  42. Jeong, J., Mertz, J.D., Adib-Ramezani, H., Beck, K., Bigas, J.P., Al-Mukhtar, M.: Influence de la teneur en eau sur la déformation du tuffeau et des mortiers. In: GEODIM2008, editor, Colloque National sur les Variations Dimensionnelles des Géomatériaux, Saint-Lazaire, France, 3–5 April (2008). (In French)

  43. Beck K., Al-Mukhtar M., Rozenbaum O., Rautureau M.: Characterization, water transfer properties and deterioration in tuffeau: building material in the loire valley france. Build. Environ. 38, 1151–1162 (2003)

    Article  Google Scholar 

  44. Beck, K.: Étude des propriétés hydriques et des mécanismes d’altération de pierres calcaires à forte porosité. PhD thesis, Université d’Orléans, October (2006). (In French)

  45. Lucas R.: Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Colloid Polym. Sci. 23, 15–22 (1918)

    Google Scholar 

  46. Washburn E.W.: The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921)

    Article  Google Scholar 

  47. Rozenbaum O., Barbanson L., Muller F., Bruand A.: Significance of a combined approach for replacement stones in the heritage buildings’ conservation frame. C. Rendus Geosci. 340, 345–355 (2008)

    Article  Google Scholar 

  48. Asthana R.: The effect of wetting kinetics on the penetration of a layered capillary. Metall. Mater. Trans. A 32, 2663–2666 (2001)

    Article  MATH  Google Scholar 

  49. Czachor H.: Modelling the effect of pore structure and wetting angles on capillary rise in soils having different wettabilities. J. Hydrol. 328, 604–613 (2006)

    Article  Google Scholar 

  50. Fries N., Odic K., Conrath M., Dreyer M.: The effect of evaporation on the wicking of liquids into a metallic weave. J. Colloid Interface Sci. 321, 118–129 (2008)

    Article  Google Scholar 

  51. Beck, K., Adib-Ramezani, H., Al-Mukhtar, M.: Mechanical strength and water content of porous limestone. In: Gdoutos, E.E. (ed.) Experimental Analysis of Nano and Engineering Materials and Structures, Proceedings of the 13th International Conference on Experimental Mechanics, Alexandroupolis, Greece., vol. Part C, subpart 37, pp. 963–964. Springer, Netherlands, December (2007)

  52. Zienkiewicz O.C., Taylor R.L., Zhu J.Z.: The Finite Element Method, Its Basis and Fundamentals. Elsevier, Butterworth-Heinemann (2005)

    Google Scholar 

  53. COMSOL AB. Comsol MultiPhysics: User’s guide, November 2008. COMSOL 3.5a.

  54. COMSOL AB. Comsol MultiPhysics: Matlab Interface Guide, November 2008. COMSOL 3.5a.

  55. Steeman H.-J., Van Belleghem M., Janssens A., De Paepe M.: Coupled simulation of heat and moisture transport in air and porous materials for the assessment of moisture related damage. Build. Environ. 44, 2176–2184 (2009)

    Article  Google Scholar 

  56. Milly P.C.D.: Moisture and heat transport in hysteretic, inhomogeneous porous media: a matrix head-based formulation and a numerical model. Water Resour. Res. 18, 489–498 (1982)

    Article  Google Scholar 

  57. Crausse, P., Laurent, J.P., Perrin, B.: Influence des phénomènes d’hystérésis sur les propriétés hydriques des matériaux poreux. Rev. Gen. Therm. 35, 95–106 February (1996). (In French).

    Google Scholar 

  58. Bazant Z., Li Y.-N.: Cohesive crack with rate-dependent opening and viscoelasticity: I. mathematical model and scaling. Int. J. Fract. 86, 247–265 (1997). doi:10.1023/A:1007486221395

    Article  Google Scholar 

  59. Liao K., Tan Y.-M.: Influence of moisture-induced stress on in situ fiber strength degradation of unidirectional polymer composite. Compos. Part B Eng. 32, 365–370 (2001)

    Article  Google Scholar 

  60. Abdel Wahab M.M., Crocombe A.D., Beevers A., Ebtehaj K.: Coupled stress-diffusion analysis for durability study in adhesively bonded joints. Int. J. Adhes. Adhes. 22, 61–73 (2002)

    Article  Google Scholar 

  61. Loh W.K., Crocombe A.D., Abdel Wahab M.M., Ashcroft I.A.: Modelling anomalous moisture uptake, swelling and thermal characteristics of a rubber toughened epoxy adhesive. Int. J. Adhes. Adhes. 25, 1–12 (2005)

    Article  Google Scholar 

  62. Shenoy, V., Ashcroft, I.A., Critchlow, G.W., Crocombe, A.D., Abdel Wahab, M.M.: An evaluation of strength wearout models for the lifetime prediction of adhesive joints subjected to variable amplitude fatigue. Int. J. Adhes. Adhes. 29, 639–649 (2009). Special Issue on Durability of Adhesive Joints.

    Google Scholar 

  63. Shenoy V., Ashcroft I.A., Critchlow G.W., Crocombe A.D., Abdel Wahab M.M.: An investigation into the crack initiation and propagation behaviour of bonded single-lap joints using backface strain. Int. J. Adhes. Adhes. 29, 361–371 (2009)

    Article  Google Scholar 

  64. Shenoy V., Ashcroft I.A., Critchlow G.W., Crocombe A.D., Abdel Wahab M.M.: Strength wearout of adhesively bonded joints under constant amplitude fatigue. Int. J. Fatigue 31, 820–830 (2009)

    Article  Google Scholar 

  65. Bazant Z.P., Huet C.: Thermodynamic functions for ageing viscoelasticity: integral form without internal variables. Int. J. Solids Struct. 36, 3993–4016 (1999)

    Article  MATH  Google Scholar 

  66. Banaszak J., Kowalski S.J.: Drying induced stresses estimated on the base of elastic and viscoelastic models. Chem. Eng. J. 86, 139–143 (2002)

    Article  Google Scholar 

  67. Muliana, A., Rajagopal, K.: Changes in the response of viscoelastic solids to changes in their internal structure. Acta Mech. 1–20 2010. doi:10.1007/s00707-010-0396-4

  68. Incropera Frank P., Dewitt David P., Bergman Theodore L., Lavine Adrienne S.: Fundamentals of Heat and Mass Transfer, 6th edn. John Wiley and Sons, New York (2010) ISBN: 978-0-470-46162-4

    Google Scholar 

  69. Ewen J., Thomas H.R.: Heating unsaturated medium sand. Geotechnique 39, 455–470 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidréza Ramézani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramézani, H., Jeong, J. Environmentally motivated modeling of hygro-thermally induced stresses in the layered limestone masonry structures: Physical motivation and numerical modeling. Acta Mech 220, 107–137 (2011). https://doi.org/10.1007/s00707-011-0463-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0463-5

Keywords

Navigation