Skip to main content
Log in

A computational model and experimental validation of shielding and amplifying effects at a crack tip near perpendicular strength-mismatched interfaces

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The stress field around the crack tip near an elastically matched but strength-mismatched interface body in a bimetallic system is influenced when the crack tip yield or cohesive zone spreads to the interface body. The concept of crack tip stress intensity parameter, K tip, is therefore employed in fracture analysis of the bimetallic body. A computational model to determine K tip is reviewed in this paper. The model, based upon i) Westergaard’s complex potentials coupled with Kolosov–Muskhelishvili’s relations between a crack tip stress field and complex potentials and ii) Dugdale’s representation of the cohesive zone clearly indicates shielding or amplifying effects of strength mismatch across the interface, depending upon the direction of the strength gradient, over the crack tip. The model is successfully validated by conducting series of high cycle fatigue tests over Mode I cracks advancing towards various strength-mismatched interfaces in bimetallic compact tension specimens prepared by electron beam welding of elastically identical weak ASTM 4340 alloy and strong MDN 250 maraging steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Distance of crack tip from interface

a* :

Radial coordinate of point near crack tip

A :

Parent body/parent steel containing crack

B :

Interface body/back up steel

b :

Length of cohesive zone across interface

c :

Crack length

c c :

Crack length ahead of load axis

c min :

Crack length required for linear elastic regime

C :

Paris constant

e, eav:

Percent difference between theoretical and experimental result, average of percent differences

E :

Modulus of elasticity

f(θ):

A function of angle w.r.t. crack axis

F :

Applied load

i:

Imaginary quantity, \({\sqrt{-1}}\)

K applied :

Applied stress intensity parameter

K C :

Plane stress fracture toughness of homogenous body

KC(bimetallic):

Plane stress fracture toughness of bimetallic body

K IC :

Plane strain fracture toughness of homogeneous body

K L :

Stress intensity parameter over cohesive zone in interface material

K tip :

Stress intensity parameter at crack tip

l :

Extension of cohesive zone into interface body

L :

Distance between load axis and left end of specimen

m :

Paris constant

n :

No. of data points

N :

Number of fatigue cycles

p :

Far field applied stress

r :

Cohesive zone length in homogeneous parent body

t :

Specimen thickness

T :

T stress

u :

Displacement in x direction in cohesive zone

v :

Displacement in y direction from crack axis in cohesive zone

W :

Weld

Y :

Yield strength

z :

Complex variable

Z f :

Distance from specimen right end to front weld interface

Z r :

Distance from specimen right end to rear weld interface

Δ:

Parameter under cyclic or fatigue load

κ :

A material constant

μ :

Shear modulus

ν :

Poisson’s ratio

ξ :

A variable

σ :

Cohesive stress

σ eff :

Effective cohesive stress

σ ij :

Crack tip stress field

σ x :

Stress in x direction

σ y :

Stress in y direction

δ ij :

Kronecker delta

τ xy :

Shear stress in xy plane

\({\varphi, \phi, \phi_1,\phi_2, \psi, \Omega_1, \Omega_2}\) :

Complex potentials

A :

Parent body/parent steel

B :

Interface body/back up steel

max:

Maximum value

min:

Minimum value

W :

Weld

*:

Value at fracture

References

  1. Suresh S., Sugimura Y., Tschegg E.K.: The growth of a fatigue crack approaching a perpendicularly-oriented, bimaterial interface. Scr. Metall. Mater. 27, 1189–1194 (1992)

    Article  Google Scholar 

  2. Sugimura Y., Lim P.G., Shih C.F., Suresh S.: Fracture normal to a bimaterial interface: effects of plasticity on crack-tip shielding and amplification. Acta Metall. Mater. 43, 1157–1169 (1995)

    Article  Google Scholar 

  3. Kikuchi M.: Ductile crack growth behaviour of welded plate. Int. J. Fract. 78, 347–362 (1996)

    Article  Google Scholar 

  4. Kim A.S., Suresh S., Shih C.F.: Plasticity effects on fracture normal to interfaces with homogeneous and graded compositions. Int. J. Solids Struct. 34, 3415–3432 (1997)

    Article  MATH  Google Scholar 

  5. Kim A.S., Besson J., Pineau A.: Global and local approaches to fracture normal to interfaces. Int. J. Solids Struct. 36, 1845–1864 (1999)

    Article  MATH  Google Scholar 

  6. Pippan R., Flechsig K., Reimelmoser F.O.: Fatigue crack propagation behavior in the vicinity of an interface between materials with different yield stresses. Mater. Sci. Eng. A 283, 225–233 (2000)

    Article  Google Scholar 

  7. Jiang F., Deng Z.L., Zhao K., Sun J.: Fatigue crack propagation normal to a plasticity mismatched bimaterial interface. Mater. Sci. Eng. A 356, 258–266 (2003)

    Article  Google Scholar 

  8. Wang B., Siegmund T.: Simulation of fatigue crack growth at plastically mismatched bi-material interfaces. Int. J. Plast. 22, 1586–1609 (2006)

    Article  MATH  Google Scholar 

  9. Predan J., Gubeljak N., Kolednik O.: On the local variation of the crack driving force in a double mismatched weld. Eng. Fract. Mech. 74, 1739–1757 (2007)

    Article  Google Scholar 

  10. Wappling D., Gunnars J., Stahle P.: Crack growth across a strength mismatched bimaterial interface. Int. J. Fract. 89, 223–243 (1998)

    Article  Google Scholar 

  11. Reimelmoser F.O., Pippan R.: The J-integral at Dugdale cracks perpendicular to interfaces of materials with dissimilar yield stresses. Int. J. Fract. 103, 397–418 (2000)

    Article  Google Scholar 

  12. Dugdale D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    Article  Google Scholar 

  13. Ukadgaonker V.G., Bhat S., Jha M., Desai P.B.: Fatigue crack growth towards the weld interface of alloy and maraging steels. Int. J. Fatigue 30, 689–705 (2008)

    Article  Google Scholar 

  14. Knott J.F.: Fundamentals of Fracture Mechanics, p. 132. Butterworths, London (1981)

    Google Scholar 

  15. Sham T.L.: The determination of the elastic T-term using higher order weight functions. Int. J. Fract. 48, 81 (1991)

    Article  Google Scholar 

  16. Leevers P.S, Radon J.C.: Inherent stress biaxiality in various fracture specimen geometries. Int. J. Fract. 19, 311 (1982)

    Article  Google Scholar 

  17. Cotterell B., Rice J.R.: Slightly curved or kinked cracks. Int. J. Fract. 16, 155 (1980)

    Article  Google Scholar 

  18. He M.Y., Hutchinson J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25, 1053–1067 (1989)

    Article  Google Scholar 

  19. Hellan K.: Introduction to Fracture Mechanics, vol. 81. McGraw-Hill, New York (1985)

    Google Scholar 

  20. Xu X.P., Needleman A.: Numerical simulation of dynamic interfacial crack growth allowing for crack growth away from the bond line. Int. J. Fract. 74, 253–275 (1995)

    Google Scholar 

  21. Muskhelishvili N.I.: Some Basic Problems of the Mathematical Theory of Elasticity, pp. 112. P. Noordhoff Ltd, Groningen, Holland (1953)

    MATH  Google Scholar 

  22. Westergaard H.M.: Bearing pressure and cracks. J. Appl. Mech. 61, A49–A53 (1939)

    Google Scholar 

  23. Sedov L.I.: A Course in Continuum Mechanics, vol. 4. Volters-Noordhoff, Groningen (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Bhat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhat, S., Narayanan, S. A computational model and experimental validation of shielding and amplifying effects at a crack tip near perpendicular strength-mismatched interfaces. Acta Mech 216, 259–279 (2011). https://doi.org/10.1007/s00707-010-0365-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0365-y

Keywords

Navigation