Skip to main content
Log in

Phase field simulations of low-dimensional ferroelectrics

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper reviews the previous work on phase field simulations of low-dimensional ferroelectrics of two-dimensional epitaxial ferroelectric islands, thin films, and nanoparticles. The simulations are conducted in real space with exact boundary conditions of a low-dimensional ferroelectric, but consuming a much longer simulation time in comparison with that conducted in Fourier space. For ferroelectric islands and thin films, the simulations exhibit spatial polarization distributions with different types of domain walls and find two critical thicknesses, at which the simulated material changes from a multidomain state to a single-domain state and from ferroelectric phase to paraelectric phase, respectively. The remanent polarization and the coercive field of the simulated ferroelectric films both decrease with decreasing film thickness. The simulations exhibit vortex patterns of polarizations, which have purely toroidal moments of polarizations and macroscopically negligible averaged polarizations, in stress-free nanoparticles when long-range electrostatic interactions are fully taken into account. However, a single-domain structure without any toroidal moment of polarizations is formed in small nanoparticles with strong long-range elastic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang B., Peng J.L., Bursill L.A., Zhong W.L.: Size effects on ferroelectricity of ultrafine particles of PbTiO3. J. Appl. Phys. 87, 3462–3467 (2000)

    Article  Google Scholar 

  2. Zhong W.L., Wang Y.G., Zhang P.L., Qu B.D.: Phenomenological study of the size effect on phase-transitions in ferroelectric particles. Phys. Rev. B 50, 698–703 (1994)

    Article  Google Scholar 

  3. Naumov I.I., Bellaiche L., Fu H.: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004)

    Article  Google Scholar 

  4. Wang Y.G., Zhong W.L., Zhang P.L.: Surface and size effects on ferroelectric-films with domain-structures. Phys. Rev. B 51, 5311–5314 (1995)

    Article  Google Scholar 

  5. Cheng J., Wang B., Du S.: Effective electroelastic properties of polycrystalline ferroelectric ceramics predicted by a statistical model. Acta Mech. 138, 163–175 (1999)

    Article  MATH  Google Scholar 

  6. Wang J., Shi S.Q., Chen L.Q., Li Y.L., Zhang T.Y.: Phase field simulations of ferroelectric/ferroelastic polarization switching. Acta. Mater. 52, 749–764 (2004)

    Article  Google Scholar 

  7. Wang J., Zhang T.Y.: Effect of long-range elastic interactions on the toroidal moment of polarization in a ferroelectric nanoparticle. Appl. Phys. Lett. 88, 182904 (2006)

    Article  Google Scholar 

  8. Li Y.L., Hu S.Y., Liu Z.K., Chen L.Q.: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395–411 (2002)

    Article  Google Scholar 

  9. Nambu S., Sagala D.A.: Domain formation and elastic long-range interaction in ferroelectric perovskites. Phys. Rev. B 50, 5838–5847 (1994)

    Article  Google Scholar 

  10. Hu H.L., Chen L.Q.: Three-dimensional computer simulation of ferroelectric domain formation. J. Am. Ceram. Soc. 81, 492–500 (1998)

    Article  Google Scholar 

  11. Cao W., Tavener S., Xie S.: Simulation of boundary condition influence in a second-order ferroelectric phase transition. J. Appl. Phys. 86, 5739–5746 (1999)

    Article  Google Scholar 

  12. Zhang W., Bhattacharya K.: A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Mater. 53, 185–198 (2005)

    Article  Google Scholar 

  13. Wang J., Zhang T.Y.: Size effects in epitaxial ferroelectric islands and thin films. Phys. Rev. B 73, 144107 (2006)

    Article  Google Scholar 

  14. Wang J., Kamlah M., Zhang T.Y., Li Y., Chen L.Q.: Size-dependent polarization distribution in ferroelectric nanostructures: phase field simulations. Appl. Phys. Lett. 92, 162905 (2008)

    Article  Google Scholar 

  15. Wang J., Kamlah M., Zhang T.Y.: Phase field simulations of ferroelectric nanoparticles with different long-range-electrostatic and -elastic interactions. J. Appl. Phys. 105, 014104 (2009)

    Article  Google Scholar 

  16. Lines M.E., Glass A.M.: Principles and Applications of Ferroelectrics and Related Materials. Clarendon press, Oxford (1977)

    Google Scholar 

  17. Mueller R., Gross D., Schrade D., Xu B.X.: Phase field simulation of domain structures in ferroelectric materials within the context of inhomogeneity evolution. Int. J. Fract. 147, 173–180 (2007)

    Article  MATH  Google Scholar 

  18. Zhang T.Y.: Strained ferroelectric thin films. Int. J. Appl. Mech. 1, 21–40 (2009)

    Article  Google Scholar 

  19. Roelofs A., Schneller T., Szot K., Waser R.: Piezoresponse force microscopy of lead-titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett. 81, 5231–5233 (2002)

    Article  Google Scholar 

  20. Ahn C.H., Rabe K.M., Triscone J.-M.: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong-Yi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Kamlah, M. & Zhang, TY. Phase field simulations of low-dimensional ferroelectrics. Acta Mech 214, 49–59 (2010). https://doi.org/10.1007/s00707-010-0322-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0322-9

Keywords

Navigation