Skip to main content
Log in

Coupled phase field simulations of ferroelectric and ferromagnetic layers in multiferroic heterostructures

  • SPECIAL
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The combination of materials with either pronounced ferroelectric or ferromagnetic effect characterizes multiferroic heterostructures, whereby the different materials can be arranged in layers, columns or inclusions. The magnetization can be controlled by the application of electrical fields through a purely mechanical coupling at the interfaces between the different materials. Thus, a magneto-electric coupling effect is obtained. Within a continuum mechanics formulation, a phase field is used to describe the polarization and the magnetization in the ferroelectric and ferromagnetic layers, respectively. The coupling between polarization/magnetization and strains within the layers, in combination with the mechanical coupling at the sharp layer interfaces, yields the magneto-electric coupling within the heterostructure. The continuum formulations for both layers are discretized in order to make the differential equations amenable to a numerical solution with the finite element method. A state-of-the-art approach is used for the ferroelectric layer. The material behavior of the ferromagnetic layer is described by a continuum formulation from the literature, which is discretized using a newly proposed approach for the consistent interpolation of the magnetization vector. Four numerical examples are presented which show the applicability of the newly proposed approach for the ferromagnetic layer as well as the possibility to simulate magneto-electric coupling in multiferroic heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Bihler, C., Althammer, M., Brandlmaier, A., Geprägs, S., Weiler, M., Opel, M., Schoch, W., Limmer, W., Gross, R., Brandt, M.S., Goennenwein, S.T.B.: Ga1\(-\)xMnxAs /piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation. Phys. Rev. B 78(4), 370 (2008). https://doi.org/10.1103/PhysRevB.78.045203

    Article  Google Scholar 

  2. Chiba, D., Yamanouchi, M., Matsukura, F., Ohno, H.: Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301(5635), 943–945 (2003). https://doi.org/10.1126/science.1086608

    Article  Google Scholar 

  3. Dornisch, W., Schrade, D., Wolf, J., Müller, R.: Numerical methods for the modeling of the magnetization vector in multiferroic heterostructures. Proc. Appl. Math. Mech. 17(1), 503–504 (2017)

    Article  Google Scholar 

  4. Dornisch, W., Stöckler, J., Müller, R.: Dual and approximate dual basis functions for B-splines and NURBS—comparison and application for an efficient coupling of patches with the isogeometric mortar method. Comput. Methods Appl. Mech. Eng. 316, 449–496 (2017). https://doi.org/10.1016/j.cma.2016.07.038

    Article  MathSciNet  Google Scholar 

  5. Fiorillo, F.: Measurement and Characterization of Magnetic Materials. North-Holland, Amsterdam (2004)

    Google Scholar 

  6. Franke, K.J.A., Lahtinen, T.H.E., van Dijken, S.: Field tuning of ferromagnetic domain walls on elastically coupled ferroelectric domain boundaries. Phys. Rev. B 85(9), 09442 (2012). https://doi.org/10.1103/PhysRevB.85.094423

    Article  Google Scholar 

  7. Franke, K.J.A., López González, D., Hämäläinen, S.J., van Dijken, S.: Size dependence of domain pattern transfer in multiferroic heterostructures. Phys. Rev. Lett. 112(1), 017201 (2014). https://doi.org/10.1103/PhysRevLett.112.017201

    Article  Google Scholar 

  8. Franke, K.J.A., van de Wiele, B., Shirahata, Y., Hämäläinen, S.J., Taniyama, T., van Dijken, S.: Reversible electric-field-driven magnetic domain-wall motion. Phys. Rev. X (2015). https://doi.org/10.1103/PhysRevX.5.011010

  9. Fried, E., Gurtin, M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D 68(3–4), 326–343 (1993). https://doi.org/10.1016/0167-2789(93)90128-N

    Article  MathSciNet  MATH  Google Scholar 

  10. Garcia, V., Bibes, M., Barthélémy, A.: Artificial multiferroic heterostructures for an electric control of magnetic properties. C. R. Physique 16(2), 168–181 (2015). https://doi.org/10.1016/j.crhy.2015.01.007

    Article  Google Scholar 

  11. Heron, J.T., Trassin, M., Ashraf, K., Gajek, M., He, Q., Yang, S.Y., Nikonov, D.E., Chu, Y.H., Salahuddin, S., Ramesh, R.: Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107(21), 217202 (2011). https://doi.org/10.1103/PhysRevLett.107.217202

    Article  Google Scholar 

  12. Hu, J.M., Chen, L.Q., Nan, C.W.: Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 28(1), 15–39 (2016). https://doi.org/10.1002/adma.201502824

    Article  Google Scholar 

  13. Hu, J.M., Li, Z., Chen, L.Q., Nan, C.W.: High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun. 2, 553 (2011). https://doi.org/10.1038/ncomms1564

    Article  Google Scholar 

  14. Jiles, D.: Introduction to Magnetism and Magnetic Materials. CRC Press, Boca Raton (2015)

    Google Scholar 

  15. Jin, Y.M.: Domain microstructure evolution in magnetic shape memory alloys: phase-field model and simulation. Acta Mater. 57(8), 2488–2495 (2009). https://doi.org/10.1016/j.actamat.2009.02.003

    Article  Google Scholar 

  16. Joseph, R., Schlömann, E.: Demagnetizing field in nonellipsoidal bodies. J. Appl. Phys. 36(5), 1579–1593 (1965)

    Article  Google Scholar 

  17. Keip, M.A., Rambausek, M.: Computational and analytical investigations of shape effects in the experimental characterization of magnetorheological elastomers. Int. J. Solids. Struct. 121, 1–20 (2017)

    Article  Google Scholar 

  18. Krishnaprasad, P.S., Tan, X.: Cayley transforms in micromagnetics. Phys. B Condens. Matter 306(1–4), 195–199 (2001). https://doi.org/10.1016/S0921-4526(01)01003-1

    Article  Google Scholar 

  19. Kuhn, C., Müller, R.: A new finite element technique for a phase field model of brittle fracture. J. Theor. Appl. Mech. 49(4), 1115–1133 (2011)

    Google Scholar 

  20. Labusch, M., Etier, M., Lupascu, D.C., Schröder, J., Keip, M.A.: Product properties of a two-phase magneto-electric composite: synthesis and numerical modeling. Comput. Mech. 54, 71–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Labusch, M., Keip, M.A., Shvartsman, V.V., Lupascu, D.C., Schröder, J.: On the influence of ferroelectric polarization states on the magneto-electric coupling in two-phase composites. Technische Mechanik 36, 73–87 (2016)

    Google Scholar 

  22. Lahtinen, T.H.E., Tuomi, J.O., van Dijken, S.: Electrical writing of magnetic domain patterns in ferromagnetic/ferroelectric heterostructures. IEEE Trans. Magn. 47(10), 3768–3771 (2011). https://doi.org/10.1109/TMAG.2011.2143393

    Article  Google Scholar 

  23. Lahtinen, T.H.E., Tuomi, J.O., van Dijken, S.: Pattern transfer and electric-field-induced magnetic domain formation in multiferroic heterostructures. Adv. Mater. 23(28), 3187–3191 (2011). https://doi.org/10.1002/adma.201100426

    Article  Google Scholar 

  24. Landau, L.D., Lifshitz, E.M.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8, 153–169 (1935)

    MATH  Google Scholar 

  25. Landis, C.M.: A continuum thermodynamics formulation for micro-magneto-mechanics with applications to ferromagnetic shape memory alloys. J. Mech. Phys. Sol. 56(10), 3059–3076 (2008). https://doi.org/10.1016/j.jmps.2008.05.004

    Article  MathSciNet  MATH  Google Scholar 

  26. Lupascu, D.C., Wende, H., Etier, M., Nazrabi, A., Anusca, I., Trivedi, H., Shvartsman, V.V., Landers, J., Salamon, S., Schmitz-Antoniak, C.: Measuring the magnetoelectric effect across scales. GAMM-Mitteilungen 38(1), 25–74 (2015). https://doi.org/10.1002/gamm.201510003

    Article  Google Scholar 

  27. Matsukura, F., Tokura, Y., Ohno, H.: Control of magnetism by electric fields. Nat. Nanotechnol. 10(3), 209–220 (2015). https://doi.org/10.1038/NNANO.2015.22

    Article  Google Scholar 

  28. Mennerich, C.: Phase-field modeling of multi-domain evolution in ferromagnetic shape memory alloys and of polycrystalline thin film growth. Ph.D. thesis. Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT) (2013)

  29. Miehe, C., Ethiraj, G.: A geometrically consistent incremental variational formulation for phase field models in micromagnetics. Comput. Methods Appl. Mech. Eng. 245–246, 331–347 (2012). https://doi.org/10.1016/j.cma.2012.03.021

    Article  MathSciNet  MATH  Google Scholar 

  30. Miehe, C., Vallicotti, D., Teichtmeister, S.: Homogenization and multiscale stability analysis in finite magneto-electro-elasticity. Application to soft matter EE, ME and MEE composites. Comput. Methods Appl. Mech. Eng. 300, 294–346 (2016). https://doi.org/10.1016/j.cma.2015.10.013

    Article  MathSciNet  Google Scholar 

  31. Roy, K.: Ultra-low-energy electric field-induced magnetization switching in multiferroic heterostructures. SPIN 06(03), 1630001 (2016). https://doi.org/10.1142/S2010324716300012

    Article  Google Scholar 

  32. Schrade, D.: Microstructural modeling of ferroelectric material behavior. Ph.D. thesis. Lehrstuhl für Technische Mechanik, TU Kaiserslautern (2011)

  33. Schrade, D., Mueller, R., Xu, B.X., Gross, D.: Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput. Methods Appl. Mech. Eng. 196(41–44), 4365–4374 (2007). https://doi.org/10.1016/j.cma.2007.05.010

    Article  MATH  Google Scholar 

  34. Schrade, D., Müller, R., Gross, D.: On the physical interpretation of material parameters in phase field models for ferroelectrics. Arch. Appl. Mech. 83(10), 1393–1413 (2013). https://doi.org/10.1007/s00419-013-0754-5

    Article  MATH  Google Scholar 

  35. Schrade, D., Müller, R., Gross, D., Keip, M.A., Thai, H., Schröder, J.: An invariant formulation for phase field models in ferroelectrics. Int. J. Solids Struct. 51(11–12), 2144–2156 (2014). https://doi.org/10.1016/j.ijsolstr.2014.02.021

    Article  Google Scholar 

  36. Schrade, D., Müller, R., Gross, D., Steinmann, P.: Phase field simulations of the poling behavior of BaTiO\(_3\) nano-scale thin films with SrRuO\(_3\) and Au electrodes. Eur. J. Mech. A. Solids 49, 455–466 (2015). https://doi.org/10.1016/j.euromechsol.2014.08.007

    Article  Google Scholar 

  37. Schröder, J., Labusch, M., Keip, M.A.: Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: Fe\(_2\)-scheme: localization and homogenization. Comput. Methods Appl. Mech. Eng. 302, 253–280 (2016)

    Article  Google Scholar 

  38. Schröder, J., Labusch, M., Keip, M.A., Kiefer, B., Brands, D., Lupascu, D.C.: Computation of non-linear magneto-electric product properties of 0–3 composites. GAMM-Mitteilungen 38(1), 8–24 (2015)

    Article  MathSciNet  Google Scholar 

  39. Sridhar, A., Keip, M.A., Miehe, C.: Homogenization in micro-magneto-mechanics. Comput. Mech. 58(1), 151–169 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Su, Y., Landis, C.M.: Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J. Mech. Phys. Sol. 55(2), 280–305 (2007). https://doi.org/10.1016/j.jmps.2006.07.006

    Article  MathSciNet  MATH  Google Scholar 

  41. Taylor, R.L.: FEAP: www.ce.berkeley.edu/feap

  42. Tokura, Y.: Multiferroics-toward strong coupling between magnetization and polarization in a solid. J. Magn. Magn. Mater. 310(2), 1145–1150 (2007). https://doi.org/10.1016/j.jmmm.2006.11.198

    Article  Google Scholar 

  43. Torelli, P.: Magnetic phase transitions in multiferroics (conference presentation). In: Drouhin, H.J., Wegrowe, J.E., Razeghi, M. (eds.) SPIE Nanoscience + Engineering, SPIE Proceedings, p. 99312L. SPIE (2016). https://doi.org/10.1117/12.2230654

  44. Wachowiak, A., Wiebe, J., Bode, M., Pietzsch, O., Morgenstern, M., Wiesendanger, R.: Direct observation of internal spin structure of magnetic vortex cores. Science 298(5593), 577–580 (2002). https://doi.org/10.1126/science.1075302

    Article  Google Scholar 

  45. Wang, D., Liu, W., Zhang, H.: Novel higher order mass matrices for isogeometric structural vibration analysis. Comput. Methods Appl. Mech. Eng. 260, 92–108 (2013). https://doi.org/10.1016/j.cma.2013.03.011

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, J.J., Hu, J.M., Ma, J., Zhang, J.X., Chen, L.Q., Nan, C.W.: Full 180 magnetization reversal with electric fields. Sci. Rep. 4, 7507 (2014). https://doi.org/10.1038/srep07507

    Article  Google Scholar 

  47. Weisheit, M., Fähler, S., Marty, A., Souche, Y., Poinsignon, C., Givord, D.: Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315(5810), 349–351 (2007). https://doi.org/10.1126/science.1136629

    Article  Google Scholar 

  48. Yang, T.N., Hu, J.M., Nan, C.W., Chen, L.Q.: On the elastically coupled magnetic and ferroelectric domains: a phase-field model. Appl. Phys. Lett. 104(20), 202402 (2014). https://doi.org/10.1063/1.4875719

    Article  Google Scholar 

  49. Yi, M., Xu, B.X.: A constraint-free phase field model for ferromagnetic domain evolution. Proc. R. Soc. A 470(2171), 20140517 (2014). https://doi.org/10.1098/rspa.2014.0517

    Article  Google Scholar 

  50. Zgonik, M., Bernasconi, P., Duelli, M., Schlesser, R., Günter, P., Garrett, M.H., Rytz, D., Zhu, Y., Wu, X.: Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO\(_3\) crystals. Phys. Rev. B 50(9), 5941–5949 (1994). https://doi.org/10.1103/PhysRevB.50.5941

    Article  Google Scholar 

  51. Zhang, J.X., Chen, L.Q.: Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater. 53(9), 2845–2855 (2005). https://doi.org/10.1016/j.actamat.2005.03.002

    Article  Google Scholar 

  52. Zhang, W., Bhattacharya, K.: A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Mater. 53(1), 185–198 (2005). https://doi.org/10.1016/j.actamat.2004.09.016

    Article  Google Scholar 

Download references

Acknowledgements

W. Dornisch and D. Schrade were partially supported by the German Research Foundation (DFG) within the Research Group FOR 1509, Grant Number MU 1370/8-2. The research of B.-X. Xu was partially supported by DFG within FOR 1509, Grant Number XU 121/4-2. The research of M.-A. Keip was partially supported by DFG within FOR 1509, Grant Number KE 1849/2-2. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Dornisch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dornisch, W., Schrade, D., Xu, BX. et al. Coupled phase field simulations of ferroelectric and ferromagnetic layers in multiferroic heterostructures. Arch Appl Mech 89, 1031–1056 (2019). https://doi.org/10.1007/s00419-018-1480-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1480-9

Keywords

Navigation