Skip to main content
Log in

Thermoelectroelastic response of a functionally graded piezoelectric strip with two parallel axisymmetric cracks

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A mixed-mode thermoelectroelastic fracture problem of a functionally graded piezoelectric material strip containing two parallel axisymmetric cracks, such as penny-shaped or annular cracks, is considered in this study. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip and that the strip is under thermal loading. The crack faces are supposed to be insulated thermally and electrically. Using integral transform techniques, the problem is reduced to that of solving two systems of singular integral equations. Systematic numerical calculations are carried out, and the variations of the stress and electric displacement intensity factors are plotted for various values of dimensionless parameters representing the crack size, the crack location and the material non-homogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu C.M., Kahn M., Moy W.: Piezoelectric ceramics with functionally gradients: a new application in material design. J. Am. Ceram. Soc. 79, 809–812 (1996)

    Article  Google Scholar 

  2. Almajid A., Taya M., Hudnut S.: Analysis of out-of-plane displacement and stress field in a piezocomposite plate with functionally graded microstructure. Int. J. Solids Struct. 38, 3377–3391 (2001)

    Article  MATH  Google Scholar 

  3. Li C., Weng G.J.: Antiplane crack problem in functionally graded piezoelectric materials. Trans. ASME. J. Appl. Mech. 69, 481–488 (2002)

    Article  MATH  Google Scholar 

  4. Ueda S.: Crack in a functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading. Theor. Appl. Fract. Mech. 40, 225–236 (2003)

    Article  MathSciNet  Google Scholar 

  5. Chen J., Liu Z.X., Zou Z.Z.: Electromechanical impact of a crack in a functionally graded piezoelectric medium. Theor. Appl. Fract. Mech. 39, 47–60 (2003)

    Article  Google Scholar 

  6. Wang B.L.: A mode III crack in functionally graded piezoelectric materials. Mech. Res. Commun 30, 151–159 (2003)

    Article  MATH  Google Scholar 

  7. Ueda S.: Electromechanical response of a center crack in a functionally graded piezoelectric strip. Smart Mater. Struct. 14, 1133–1138 (2005)

    Article  Google Scholar 

  8. Ueda S.: Impact response of a functionally graded piezoelectric plate with a vertical crack. Theor. Appl. Fract. Mech. 44, 329–342 (2005)

    Article  Google Scholar 

  9. Ueda S.: A finite crack in a semi-infinite strip of a grade piezoelectric material under electric loading. Eur. J. Mech. A/Solids 25, 250–259 (2006)

    Article  MATH  Google Scholar 

  10. Ueda S.: Transient response of a center crack in a functionally graded piezoelectric strip under electromechanical impact. Eng. Fract. Mech. 73, 1455–1471 (2006)

    Article  MathSciNet  Google Scholar 

  11. Ueda S.: Electromechanical impact of an impermeable parallel crack in a functionally graded piezoelectric strip. Eur. J. Mech. A/Solids 26, 123–136 (2007)

    Article  MATH  Google Scholar 

  12. Ueda S., Ashida F.: Transient response of a functionally graded piezoelectric strip with a penny-shaped crack under electric time-dependent loading. Acta Mech. 194, 175–190 (2007)

    Article  MATH  Google Scholar 

  13. Ueda S.: Functionally graded piezoelectric strip with a penny-shaped crack under electromechanical loadings. Eur. J. Mech. A/Solids 27, 50–60 (2008)

    Article  MATH  Google Scholar 

  14. Rao S.S., Sunar M.: Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey. Appl. Mech. Rev. 47, 113–123 (1994)

    Article  Google Scholar 

  15. Tauchert T.R.: Piezothermoelastic behavior of a laminated plate. J. Thermal Stress. 15, 25–37 (1992)

    Article  Google Scholar 

  16. Noda N., Kimura S.: Deformation of a piezothermoelectric composite plate considering the coupling effect. J. Thermal Stress. 21, 359–379 (1998)

    Article  Google Scholar 

  17. Ashida F., Choi J.S., Noda N.: Control of elastic displacement in piezoelectric-based intelligent plate subjected to thermal load. I. J. Eng. Sci. 38, 851–868 (1997)

    Article  Google Scholar 

  18. Ashida F., Tauchert T.R.: Transient response of a piezothermoelastic circular disk under axisymmetric heating. Acta Mech. 128, 1–14 (1998)

    Article  MATH  Google Scholar 

  19. Ootao Y., Tanigawa Y.: Three-dimensional transient piezothermoelasticity in functionally graded rectangular plate bonded to a piezoelectric plate. Int. J. Solids Struct. 37, 4377–4401 (2000)

    Article  MATH  Google Scholar 

  20. Wang B.L., Noda N.: Thermally induced fracture of a smart functionally graded composite structure. Theor. Appl. Fract. Mech. 35, 93–109 (2001)

    Article  Google Scholar 

  21. Ueda S.: Thermally induced fracture of a functionally graded piezoelectric layer. J. Thermal Stress. 27, 291–309 (2004)

    Article  Google Scholar 

  22. Ueda S.: A cracked functionally graded piezoelectric material strip under transient thermal loading. Acta Mech. 199, 53–70 (2008)

    Article  MATH  Google Scholar 

  23. Ueda S.: Thermoelectroelastic response of a center crack in a symmetrical functionally graded piezoelectric strip. J. Thermal Stress. 30, 125–144 (2007)

    Article  Google Scholar 

  24. Ueda S.: Thermal intensity factors for a parallel crack in a functionally graded piezoelectric strip. J. Thermal Stress. 30, 321–342 (2007)

    Article  Google Scholar 

  25. Ueda S.: Effects of crack surface conductance on intensity factors for a cracked functionally graded piezoelectric material under thermal load. J. Thermal Stress. 30, 731–752 (2007)

    Article  Google Scholar 

  26. Ueda S., Kondo H.: Transient intensity factors for a parallel crack in a plate of a functionally graded piezoelectric material under thermal shock loading conditions. J. Thermal Stress. 31, 211–232 (2008)

    Article  Google Scholar 

  27. Ueda S.: A penny-shaped crack in a functionally graded piezoelectric strip under thermal loading. Eng. Fract. Mech. 74, 1255–1273 (2007)

    Article  Google Scholar 

  28. Ueda S.: Transient thermoelectroelastic response of a functionally graded piezoelectric strip with a penny-shaped crack. Eng. Fract. Mech. 75, 1204–1222 (2008)

    Article  Google Scholar 

  29. Ueda S., Nishimura N.: An annular crack in a functionally graded piezoelectric strip under thermoelectric loadings. J. Thermal Stress. 31, 1079–1098 (2008)

    Article  Google Scholar 

  30. Ueda S., Iogawa T.: Two parallel penny-shaped or annular cracks in a functionally graded piezoelectric strip under electric loading. Acta Mech. 210, 57–70 (2010)

    Article  MATH  Google Scholar 

  31. Ueda S., Tani Y.: Thermal stress intensity factors for two coplanar cracks in a piezoelectric strip. J. Thermal Stress. 31, 403–415 (2008)

    Article  Google Scholar 

  32. Ueda S., Ikawa K.: Thermoelectromechanical interaction between two parallel cracks in a piezoelectric strip. J. Thermal Stress. 31, 311–330 (2008)

    Article  Google Scholar 

  33. Ueda S., Ishii A.: Thermoelectromechanical response of a piezoelectric strip with two parallel cracks of different lengths. J. Thermal Stress. 31, 976–990 (2008)

    Article  Google Scholar 

  34. Wang B.L., Mai Y.W.: Impermeable crack and permeable crack assumptions, which one is more realistic?. Trans. ASME, J. Appl. Mech. 71, 575–578 (2004)

    Article  MATH  Google Scholar 

  35. Sneddon I.N., Lowengrub M.: Crack problems in the classical theory of elasticity. Wiley, New York (1969)

    MATH  Google Scholar 

  36. Erdogan F., Wu B.H.: Crack problem in FGM layers under thermal stress. J. Thermal Stress. 19, 237–265 (1996)

    Article  Google Scholar 

  37. Erdogan, F., Gupta, G.D., Cook, T.S.: In: Sih, G.C. Methods of analysis and solution of crack problems, Noordhoff, Leyden (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sei Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, S., Iogawa, T. & Kondo, H. Thermoelectroelastic response of a functionally graded piezoelectric strip with two parallel axisymmetric cracks. Acta Mech 214, 205–224 (2010). https://doi.org/10.1007/s00707-010-0313-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0313-x

Keywords

Navigation