Skip to main content

Advertisement

Log in

A comprehensive analysis for the shakedown of a Bree plate made of functionally graded materials

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The shakedown of a functionally graded (FG) plate subjected to coupled constant mechanical load and cyclically varying temperature is analyzed comprehensively. The material of the plate is composed of an elastoplastic matrix and elastic particles, and the particle volume fraction varies through the thickness. The distributions of the effective mechanical and thermal properties of the composites through the thickness are evaluated with mean-field approaches and described with an exponential law. The temperature dependence of the material properties is taken into account. The distribution of temperature change and the shakedown of a typical FG Bree plate are analyzed. The comparison with the results of its homogeneous counterpart and that without considering the temperature dependence of the material properties exhibits marked qualitative and quantitative difference. The effect of the temperature dependence of the elastic properties of materials is also investigated. Since FG structures are usually subject to severe coupled thermal-mechanical loadings, the approach developed and the results obtained are significant for the analysis and design of such kind of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ilschner B.: Processing-microstructure-property relationships in graded materials. J. Mech. Phys. Solids 44(5), 647–656 (1996)

    Article  Google Scholar 

  2. Praveen G.N., Chin C.D., Reddy J.N.: Thermoelastic analysis of functionally graded ceramic-metal cylinder. J. Eng. Mech. 125, 1259–1267 (1999)

    Article  Google Scholar 

  3. Fujihara K., Teo K., Gopal R., Loh P.L., Ganesh V.K., Ramakrishna S., Foong K.W.C., Chew C.L.: Fibrous composite materials in dentistry and orthopaedics: review and applications. Compos. Sci. Technol. 64, 775–788 (2004)

    Article  Google Scholar 

  4. Wataria F., Yokoyama A., Omori M., Hirai T., Kondo H., Uo M., Kawasaki T.: Biocompatibility of materials and development to functionally graded implant for bio-medical application. Compos. Sci. Technol. 64, 893–908 (2004)

    Article  Google Scholar 

  5. Shabana Y.M., Noda N.: Numerical evaluation of the thermomechanical effective properties of a functionally graded material using the homogenization method. Int. J. Solids Struct. 45, 3494–3506 (2008)

    MATH  Google Scholar 

  6. Tanigawa Y.: Some basic thermoelastic problems for nonhomogeneous structural materials. Appl. Mecha. Rev. 48(6), 287–300 (1995)

    Article  Google Scholar 

  7. Kim K.S., Noda N.: Green’s function approach to solution of transient temperature for thermal stresses of functionally graded material. Int. J. Ser. A Solids Mech. Mater. Eng. 44(1), 31–36 (2001)

    Google Scholar 

  8. Loy C.T., Lam K.Y., Reddy J.N.: Vibration of functionally graded cylindrical shells. Int. J. Mech. Sci. 41(3), 309–324 (1999)

    Article  MATH  Google Scholar 

  9. Yang J., Shen H.S.: Dynamic response of initially stressed functionally graded rectangular thin plates. Compos. Struct. 54(4), 497–508 (2001)

    Article  Google Scholar 

  10. Weng G.J.: Effective bulk moduli of two functionally graded composites. Acta Mech. 166, 57–67 (2003)

    Article  MATH  Google Scholar 

  11. Ghosh M.K., Kanoria M.: Analysis of thermoelastic response in a functionally graded spherically isotropic hollow sphere based on Green—Lindsay theory. Acta Mech. 207, 51–67 (2009)

    Article  MATH  Google Scholar 

  12. Wang B., Han J., Du S.Y.: Crack problems for functionally graded materials under transient thermal loading. J. Therm. Stress. 23(2), 143–168 (2000)

    Article  Google Scholar 

  13. Li C., Weng G.J., Duan Z., Zou Z.: Dynamic stress intensity factor of a functionally graded material under antiplane shear loading. Acta Mech. 149, 1–10 (2001)

    Article  MATH  Google Scholar 

  14. Ueda S.: A cracked functionally graded piezoelectric material strip under transient thermal loading. Acta Mech. 199, 53–70 (2008)

    Article  MATH  Google Scholar 

  15. Amit K.C., Kim J.H.: Interaction integrals for thermal fracture of functionally graded materials. Eng. Fract. Mech. 75, 2542–2565 (2008)

    Article  Google Scholar 

  16. Noda N.: Thermal stresses in functionally graded materials. J. Therm. Stress. 22, 477–512 (1999)

    Article  MathSciNet  Google Scholar 

  17. Ootao Y., Tanigawa Y.: Three-dimensional solution for transient thermal stresses of an orthotropic functionally graded rectangular plate. Compos. Struct. 80(1), 10–20 (2007)

    Article  Google Scholar 

  18. Marin L., Lesnic D.: The method of fundamental solutions for nonlinear functionally graded materials. Int. J. Solids Struct. 44, 6878–6890 (2007)

    Article  MATH  Google Scholar 

  19. Noda N., Guo L.-C.: Thermal shock analysis for a functionally graded plate with a surface crack. Acta Mech. 195, 157–166 (2008)

    Article  MATH  Google Scholar 

  20. Elishakoff I., Gentilini C.: Three-dimensional flexure of rectangular plates made of functionally graded materials. J. Appl. Mech. 72(5), 788–791 (2005)

    Article  MATH  Google Scholar 

  21. Zhong Z., Shang E.T.: Three-dimensional exact analysis of simply supported functionally gradient piezoelectric plates. Int. J. Solids Struct. 40(20), 5335–5352 (2003)

    Article  MATH  Google Scholar 

  22. Zhang Z.J., Paulino G.H.: Cohesive zone modelling of dynamic failure in homogeneous and functionally graded materials. Int. J. Plast. 21(6), 1195–1254 (2005)

    Article  MATH  Google Scholar 

  23. Ying J., Lu C.F., Chen W.Q.: Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Compos. Struct. 84, 209–219 (2008)

    Article  Google Scholar 

  24. Liew K.M., Kitipornchai S.: Analysis of thermal stress behavior of functionally graded hollow circular cylinders. Int. J. Solids Struct. 40, 2355–2380 (2003)

    Article  MATH  Google Scholar 

  25. Eslami M.R., Babaei M.H., Poultangari R.: Thermal and mechanical stresses in a functionally graded thick sphere. Int. J. Press. Vessels Pip. 82, 522–527 (2005)

    Article  Google Scholar 

  26. Li X.Y., Ding H.J., Chen W.Q.: Axisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic functionally graded materials. Acta Mech. 196, 139–159 (2008)

    Article  MATH  Google Scholar 

  27. Pao Y.-H., Chen W.-Q.: Elastodynamic theory of framed structures and reverberation-ray matrix analysis. Acta Mech. 204, 61–79 (2009)

    Article  MATH  Google Scholar 

  28. Yang J., Liew K.M., Wu Y.F., Kitipomchai S.: Thermo-mechanical post-buckling of FGM cylindrical panels with temperature dependent properties. Int. J. Solids Struct. 43(2), 307–324 (2006)

    Article  MATH  Google Scholar 

  29. Na K.S., Kim J.H.: Three-dimensional thermomechanical buckling analysis for functionally graded composite plates. Compos. Struct. 73(4), 413–422 (2006)

    Article  MathSciNet  Google Scholar 

  30. Feldoman E., Aboudi J.: Buckling analysis of functionally graded plates subjected to uniaxial loading. Compos. Struct. 38, 29–36 (1997)

    Article  Google Scholar 

  31. You L.H., Ou H., Zheng Z.Y.: Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure. Compos. Struct. 78, 285–291 (2007)

    Article  Google Scholar 

  32. Sofiyev A.H.: Dynamic buckling of functionally graded cylindrical thin shells under non-periodic impulsive loading. Acta Mech. 165, 151–163 (2003)

    Article  MATH  Google Scholar 

  33. Peng X., Zheng H., Hu N., Fang C.: Static and kinematic shakedown analysis of FG plate subjected to constant mechanical load and cyclically varying temperature change. Compos. Struct. 91(2), 212–221 (2009)

    Article  Google Scholar 

  34. Peng X., Fan J., Zeng X.: Analysis for Plastic buckling of thin-walled cylinders via non-classical constitutive theory of plasticity. Int. J. Solids Struct. 33(30), 4495–4509 (1996)

    Article  MATH  Google Scholar 

  35. Peng X., Ponter A.R.S.: Extremal properties of endochronic plasticity, part II: extremal path of the endochronic constitutive equation with a yield surface and application. Int. J. Plast. 9, 567–581 (1993)

    Article  Google Scholar 

  36. König J.A.: Shakedown of Elastic-Plastic Structures. PWN-Polish Scientific Publishers, Warsaw (1987)

    Google Scholar 

  37. Bree J.: Elastic plastic behavior of thin tubes subjected to internal pressure and intermittent high heat fluxes with application to fast nuclear reactor fuel elements. J. Strain Anal. 2, 226–238 (1967)

    Article  Google Scholar 

  38. König J.A.: A shakedown theorem for temperature dependent elastic moduli. Bull. Ac. Pol. Sci. Ser. Sci. Technol. 17, 161 (1968)

    Google Scholar 

  39. Sankar B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61(5), 689–696 (2001)

    Article  Google Scholar 

  40. Cho J.R., Oden J.T.: Functionally graded material: a parametric study on thermal-stress characteristics using the Crank-Nicolson-Galerkin scheme. Comput. Methods Appl. Mech. Eng. 188, 17–38 (2000)

    Article  MATH  Google Scholar 

  41. Shen Y.L.: Thermal expansion of metal—ceramic composites: a three-dimensional analysis. Mater. Sci. Eng. A 252, 269–275 (1998)

    Article  Google Scholar 

  42. Kuromitsu T., Yoshida H., Takebe H., Morinaga K.: Interaction between alumina and binary glasses. J. Am. Ceram. Soc. 80(6), 1583–1587 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Hu, N., Zheng, H. et al. A comprehensive analysis for the shakedown of a Bree plate made of functionally graded materials. Acta Mech 214, 169–184 (2010). https://doi.org/10.1007/s00707-010-0312-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0312-y

Keywords

Navigation