Skip to main content
Log in

On the fatigue fracture at adsorption/desorption of water in/from liquid-repellent nanoporous silica

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, fatigue fracture tests on liquid-repellent nanoporous silica micro-particles dispersed in water are reported; then, models of the grain cracking and fragmentation are proposed. Such tests can be regarded, from an external standpoint, as conducted under temporally variable but spatially uniform pressure distribution in the liquid surrounding the silica grains, or from an internal standpoint, as surface fatigue that occurs at the cyclical adsorption/desorption of water in/from the nanoporous particles. The test rig represents a compression–decompression cylinder divided into two chambers, one of constant volume and the other of variable volume. Silica is introduced inside the cavity of fixed volume, and a micro-filter is used to separate it from the chamber of variable volume, in which only water is supplied. Experimental results suggest that the fatigue fracture of silica particles occurs from the inside, explosion-like, oppositely to the previously reported implosion-like collapse of silica under wet pressurization. This is accompanied by enhancement of the hydrophilic silanol groups on the silica surface and by redistribution of the size of particles and pores. Critical numbers of cycles to achieve fracture of the silica particles obtained experimentally, and from the models of grain cracking and fragmentation, under cyclical pressurization, are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Åström J.A., Herrmann H.J.: Fragmentation of grains in a two-dimensional packing. Eur. Phys. J. B 5, 551 (1998)

    Article  Google Scholar 

  2. Chytil S., Haugland L., Blekkan E.A.: On the mechanical stability of mesoporous silica SBA-15. Microporous Mesoporous Mater. 111, 134 (2008). doi:10.1016/j.micromeso.2007.07.020

    Article  Google Scholar 

  3. Coiffard L., Eroshenko V.A.: Temperature effect on water intrusion/expulsion in grafted silica gels. J. Colloid Interface Sci. 300, 304 (2006). doi:10.1016/j.jcis.2006.03.054

    Article  Google Scholar 

  4. Coiffard L., Eroshenko V.A., Grolier J.P.E.: Thermo-mechanics of the variation of interfaces in heterogeneous lyophobic systems. AIChE J. 51, 1246 (2005). doi:10.1002/aic.10371

    Article  Google Scholar 

  5. Eroshenko V.A., Regis R.C., Soulard M., Patarin J.: Energetics: a new field of applications for hydrophobic zeolites. J. Am. Chem. Soc. 123, 8129 (2001). doi:10.1021/ja011011a

    Article  Google Scholar 

  6. Fadeev A.Y., Eroshenko V.A.: Study of penetration of water into hydrophobized silicas. J. Colloid Interface Sci. 187, 275 (1997). doi:10.1006/jcis.1996.4495

    Article  Google Scholar 

  7. Freiman S.W., Wiederhorn S.M., Mecholsky J.J.: Environmentally enhanced fracture of glass: a historical perspective. J. Am. Ceram. Soc. 92, 1371 (2009). doi:10.1111/j.1551-2916.2009.03097.x

    Article  Google Scholar 

  8. Herbold, E.B., Kim, J., Nesterenko, V.F., Wang, S.Y., Daraio, C.: Pulse propagation in a linear and nonlinear diatomic periodic chain: effect of acoustic frequency band-gap. Acta Mech. doi:10.1007/s00707-009-0163-6

  9. Kundu T.: Fundamentals of Fracture Mechanics. CRC Press, Boca Raton (2008)

    Google Scholar 

  10. Louat N.P.: On the theory of normal grain growth. Acta Metallurgica 22, 721 (1974). doi:10.1016/0001-6160(74)90081-9

    Article  Google Scholar 

  11. Shodja H.M., Hirose Y., Mura T.: Intergranular crack nucleation in bicrystalline materials under fatigue. Trans. ASME J. App. Mech. 63, 788 (1996)

    Article  MATH  Google Scholar 

  12. Springuel-Huet M.A., Bonardet J.L., Gedeon A., Yue Y., Romannikov V.N., Fraissard J.: Mechanical properties of mesoporous silicas and alumina-silicas MCM-41 and SBA-15 studied by N2 adsorption and 129Xe NMR. Microporous Mesoporous Mater. 44–45, 775 (2001). doi:10.1016/S1387-1811(01)00260-8

    Article  Google Scholar 

  13. Stainton C., Liang W., Kendall K.: Formation and fracture of adhesive bonds between colloidal spheres. Eng. Fract. Mech. 61, 83 (1998). doi:10.1016/S0013-7944(98)00056-3

    Article  Google Scholar 

  14. Suciu C.V.: Experimental investigations on the nano-damping durability. ASME MicroNano 2008(70018), 1–9 (2008)

    Google Scholar 

  15. Suciu C.V., Yaguchi K.: Endurance tests on a colloidal damper destined to vehicle suspension. Exp. Mech. Int. J. 49, 383 (2009). doi:10.1007/s11340-008-9163-z

    Article  Google Scholar 

  16. Suciu C.V., Iwatsubo T., Deki S.: Investigation of a colloidal damper. J. Colloid Interface Sci. 259, 62 (2003). doi:10.1016/S0021-9797(02)00076-0

    Article  Google Scholar 

  17. Suciu C.V., Iwatsubo T., Yaguchi K., Ikenaga M.: Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel. J. Colloid Interface Sci. 283, 169 (2005). doi:10.1016/j.jcis.2004.08.034

    Article  Google Scholar 

  18. Trzpit M., Soulard M., Patarin J.: The pure silica chabazite: a high volume molecular spring at low pressure for energy storage. Chem. Lett. 36, 980 (2007). doi:10.1246/cl.2007.980

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudiu Valentin Suciu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suciu, C.V., Tani, S. & Yaguchi, K. On the fatigue fracture at adsorption/desorption of water in/from liquid-repellent nanoporous silica. Acta Mech 214, 195–203 (2010). https://doi.org/10.1007/s00707-010-0306-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0306-9

Keywords

Navigation