Skip to main content
Log in

Transient response of a square plate from an expanding footprint

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The transient response of a free disk on crushable material striking a rigid surface was analyzed by El-Raheb (IJSS 45, 4289–4306, 2008). Unlike the free disk whose fundamental mode has a dish-like axisymmetric shape, the free square plate includes two additional modes at lower frequencies. Treated is the response of the square plate to a moving front either parallel to a diagonal or to an edge, simulating two limiting cases of oblique impact of the plate on crushable material. Emphasis is given to the difference between the two fronts and comparison to the case of the disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Raheb M.: Transient response of an elastic plate on crushable material striking a rigid surface. Int. J. Solids Struct. 45, 4289–4306 (2008)

    Article  MATH  Google Scholar 

  2. Gorman D., Wei D.: The superposition-Galerkin method for free vibration analysis of rectangular plates. J. Sound Vibr. 194, 187–198 (1996)

    Article  Google Scholar 

  3. Gorman D., Wei D.: Accurate free vibration analysis of laminated symmetric cross-ply rectangular plates by the superposition-Galerkin method. Composite Struct. 31, 129–136 (1995)

    Article  Google Scholar 

  4. Liew K., Hung K., Lim M.: Continuum three-dimensional vibration analysis of thick rectangular plates. Int. J. Solids Struct. 30, 3357–3379 (1993)

    Article  MATH  Google Scholar 

  5. Liew K., Hung K., Lim M.: Three-dimensional vibration of rectangular plates: effects of thickness and edge constraints. J. Sound Vibr. 182, 709–727 (1995)

    Article  Google Scholar 

  6. Reddy J.: Analysis of functionally graded plates. Int. J. Numer. Meth. Eng. 47, 663–684 (2000)

    Article  MATH  Google Scholar 

  7. Vel S., Batra R.: Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J. Sound Vibr. 272, 703–730 (2004)

    Article  Google Scholar 

  8. Bhashkar K., Sivaram A.: Untruncated infinite series superposition method for accurate flexural analysis of isotropic /orthotropic rectangular plates with arbitrary edge conditions. Composite Struct. 83, 83–92 (2008)

    Article  Google Scholar 

  9. Shufrin I., Rabinovitch O., Eisenberger M.: Buckling of symmetrically laminated rectangular plates with general boundary conditions–A semi analytical approach. Composite Struct. 82, 521–531 (2008)

    Article  Google Scholar 

  10. Malik M., Bert C.: Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method. Int. J. Solids Struct. 35, 299–318 (1998)

    Article  MATH  Google Scholar 

  11. Liew K., Teo T.: Modeling via differential quadrature method: three-dimensional solutions for rectangular plates. Comput. Meth. Appl. Mech. Eng. 159, 369–381 (1998)

    Article  MATH  Google Scholar 

  12. Liew K., Teo T.: Three-dimensional vibration analysis of rectangular plates based on differential quadrature method. J. Sound Vibr. 220, 577–599 (1999)

    Article  Google Scholar 

  13. Liu F., Liew K.: Analysis of thick rectangular plates with mixed boundary constraints using differential quadrature element method. J. Sound Vibr. 225, 915–934 (1999)

    Article  Google Scholar 

  14. Lu C., Zhang Z., Chen W.: Free vibrations of generally supported rectangular Kirchhoff plates: state-space-based differential quadrature method. Int. J. Numer. Meth. Eng. 70, 1430–1450 (2007)

    Article  Google Scholar 

  15. Wei G.: Vibration analysis by discrete singular convolution. J. Sound Vibr. 244, 535–553 (2001)

    Article  Google Scholar 

  16. Wei G., Zhao Y., Xiang Y.: The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution. Int. J. Mech. Sci. 43, 1731–1746 (2001)

    Article  MATH  Google Scholar 

  17. Wei G., Zhao Y., Xiang Y.: Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: theory and algorithm. Int. J. Num. Meth. Eng. 558, 913–946 (2002)

    Article  MathSciNet  Google Scholar 

  18. Zhao Y., Wei G., Xiang Y.: Discrete singular convolution for the prediction of high frequency vibration of plates. Int. J. Solids Struct. 39, 65–88 (2002)

    Article  MATH  Google Scholar 

  19. Civalek O.: Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on the discrete singular convolution method. Int. J. Mech. Sci. 49, 752–765 (2006)

    Article  Google Scholar 

  20. Hutchinson J., Zillmer S.: Vibration of a free rectangular parallelepiped. J. Appl. Mech. 50, 123–130 (1983)

    Article  MATH  Google Scholar 

  21. Young P., Yuan J., Dickinson S.: Three-dimensional analysis of free vibrations of thick rectangular plates with depressions, grooves or cut-outs. J. Vibr. Acoust. 118, 184–189 (1996)

    Article  Google Scholar 

  22. Zhou D., Cheung Y., Au F., Lo S.: Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method. Int. J. Solids Struct. 39, 6339–6353 (2002)

    Article  MATH  Google Scholar 

  23. Kjellmert B.: A Chebyshev collocation multi-domain method to solve the Reissner-Mindlin equations for the transient response of an anisotropic plate subjected to impact. Int. J. Numer. Meth. Eng. 40, 3689–3702 (1997)

    Article  MATH  Google Scholar 

  24. Mindlin R.: Influence of rotary inertia and shear deformation on flexural motions of isotropic elastic disks. Trans. ASME J. Appl. Mech. 73, 31–38 (1951)

    Google Scholar 

  25. Ku H., Hatsiavramidis D.: Chebyshev expansion methods for the solution of the extended Graetz problem. J. Comp. Phys. 56, 495–512 (1984)

    Article  MATH  Google Scholar 

  26. Anderson, E., Bai, Z., Bichof, C., Blackford, S., Demmel, J., Dongara, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK user’s guide, Soc. Industr. Appl. Math. (SIAM), Philadelphia, 3rd Edn (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael El-Raheb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Raheb, M. Transient response of a square plate from an expanding footprint. Acta Mech 214, 375–394 (2010). https://doi.org/10.1007/s00707-010-0297-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0297-6

Keywords

Navigation