Skip to main content
Log in

Numerical Analysis of Shock Interactions with the Example of Painleve Paradox with a “Slanted” Fall of a Rod

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider a system that belongs to the class of well-known Painlevé problems; to solve it, we use the method of opening spatio-temporal singularities proposed by the authors. This method makes it possible to unambiguously solve the problem of finding the speeds of a body after hitting a surface with dry friction, i.e., to resolve a situation where traditional approaches either yield an ambiguous answer or lead to an infeasible system of relations (the Painlevé paradox).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsypkin, Ya.Z., Perekhodnye i ustanovivshiesya protsessy v impul'snykh sistemakh (Transition and Steady-State Processes in Impulse Systems), Moscow: Gosenergoizdat, 1951.

    Google Scholar 

  2. Tsypkin, Ya.Z., Teoriya impul'snykh sistem (Theory of Impulse Systems), Moscow: Fizmatgiz, 1958.

    Google Scholar 

  3. Tsypkin, Ya.Z., Teoriya lineinykh impul'snykh sistem (Theory of Linear Impulse Systems), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  4. Polyak, B.T., Development of Automatic Control Theory, Probl. Upravlen., 2009, no. 3.1, pp. 13–18.

    Google Scholar 

  5. Halanay, A. and Wexler, D., Teoria Calitativă a Sistemelor cu Impulsuri, Bucureşti: Editura Academiei Republicii Socialiste România, 1968. Translated under the title Kachestvennaya teoriya impul'snykh sistem, Moscow: Mir, 1971.

    Google Scholar 

  6. Tsypkin, Ya.Z. and Popkov, Yu.S., Teoriya nelineinykh impul'snykh sistem (Theory of Nonlinear Impulse Systems), Moscow: Nauka, 1973.

    Google Scholar 

  7. Rishel, R.W., An Extended Pontriagin Principle for Control Systems whose Control Laws Contain Measures, J. SIAM, Ser. A, Control, 1965, vol. 3, no. 2, pp. 191–205.

    MATH  Google Scholar 

  8. Miller, B.M. and Rubinovich, E.Ya., Impulsive Control in Continuous and Discrete-Continuous Systems, New York: Kluwer, 2003.

    Book  Google Scholar 

  9. Miller, B.M. and Rubinovich, E.Ya., Optimizatsiya dinamicheskikh sistem s impul'snymi upravleniyami (Optimization of Dynamical Systems with Impulse Controls), Moscow: Nauka, 2005.

    Google Scholar 

  10. Miller, B.M. and Rubinovich, E.Ya., Optimizatsiya dinamicheskikh sistem s impul'snymi upravleniyami i udarnymi vozdeistviyami (Optimization of Dynamical Systems with Impulse Controls and Impact Interactions), Moscow: LENAND/URSS, 2019.

    Google Scholar 

  11. Miller, B.M., Method of Discontinuous Time Change in Problems of Control for Impulse and Discrete-Continuous Systems, Autom. Remote Control, 1993, vol. 54, no. 12, pp. 1727–1750.

    Google Scholar 

  12. Gurman, V.I., On Optimal Processes with Unbounded Derivatives, Autom. Remote Control, 1972, vol. 33, no. 12, pp. 1924–1930.

    MathSciNet  MATH  Google Scholar 

  13. Miller, B.M. and Rubinovich, E.Ya., Dynamical Systems with Discontinuous Solutions and Problems with Unbounded Derivatives, Izv. Irkut. Gos. Univ., Ser. Mat., 2017, vol. 19, pp. 136–149.

    MathSciNet  MATH  Google Scholar 

  14. Zavalishchin, S.T. and Sesekin, A.N., Impul'snye protsessy: modeli i prilozheniya (Impulse Processes: Models and Applications), Moscow: Nauka, 1991.

    Google Scholar 

  15. Zavalishchin, S.T. and Sesekin, A.N., Dynamic Impulse Systems. Theory and Applications, The Netherlands, Dordrecht: Kluwer, 1997.

    Book  Google Scholar 

  16. Miller, B.M., An Optimality Condition in Control of a System which is Described by a Differential Equation with a Measure, Autom. Remote Control, 1982, vol. 43, no. 6, pp. 752–761.

    MATH  Google Scholar 

  17. Miller, B.M., Conditions for Optimality in Generalized Control Problems. I, II, Autom. Remote Control, 1992, vol. 53, no. 3, pp. 362–370; no. 4, pp. 505-513.

    Google Scholar 

  18. Dykhta, V.A. and Samsonyuk, O.N., Optimal'noe impul'snoe upravlenie s prilozheniyami (Optimal Impulse Control with Applications), Moscow: Fizmatlit, 2000.

    MATH  Google Scholar 

  19. Bressan, A. and Rampazzo, F., On Differential Systems with Quadratic Impulses and Their Applications to Lagrangian Mechanics, SIAM J. Control Optim., 1993, vol. 31, pp. 1206–1220.

    Article  MathSciNet  Google Scholar 

  20. Bressan, A. and Rampazzo, F., Impulsive Control Systems without Commutativity Assumptions, J. Optim. Theory Appl., 1994, vol. 81, no. 3, pp. 435–457.

    Article  MathSciNet  Google Scholar 

  21. Panovko, Ya.G., Vvedenie v teoriyu mekhanicheskogo udara (Introduction to the Theory of Mechanical Impulse), Moscow: Nauka, 1977.

    Google Scholar 

  22. Kozlov, V. and Treshev, D., Billiardy (geneticheskoe vvedenie v dinamiku sistem s udarami) (Billiards (A Genetic Introduction to the Dynamics of Systems with Impacts)), Moscow: Mosk. Gos. Univ., 1991.

    Google Scholar 

  23. Ivanov, A.P., Dinamika sistem s mekhanicheskimi soudareniyami (Dynamics of Systems with Mechanical Collisions), Moscow: Mezhdunar. Programma Obrazovaniya, 1997.

    Google Scholar 

  24. Bentsman, J. and Miller, B.M., Dynamical Systems with Active Singularities of Elastic Type: A Modeling and Controller Synthesis Framework, IEEE Trans. Autom. Control, 2007, vol. 52, no. 1, pp. 39–55.

    Article  MathSciNet  Google Scholar 

  25. Miller, B.M., Controllable Systems with Impact Influences, Sovrem. Mat. Fundament. Napravlen., 2011, vol. 42, pp. 166–178.

    Google Scholar 

  26. Miller, B.M. and Rubinovich, E.Ya., Discontinuous Solutions in the Optimal Control Problems and Their Representation by Singular Space-Time Transformations, Autom. Remote Control, 2013, vol. 74, no. 12, pp. 1969–2006.

    Article  MathSciNet  Google Scholar 

  27. Stronge, W.J., Rigid Body Collisions with Friction, Proc. Roy. Soc. London, Ser. A, 1990, vol. 431, pp. 168–181.

    Article  MathSciNet  Google Scholar 

  28. Paoli, L. and Schatzman, M., Mouvement `a un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie, Math. Modell. Numer. Anal., 1993, no. 27, pp. 673–717.

    Article  Google Scholar 

  29. Painlevé, P., Leçons sur le Frottement, Paris: Hermann, 1895. Translated under the title Lektsii o trenii, Moscow: GiTTL, 1954.

    MATH  Google Scholar 

  30. Samsonov, V.A., Dynamics of a Brake Shoe and “Friction-Caused Impact,” Prikl. Mat. Mekh., 2005, vol. 69, no. 6, pp. 912–921.

    MathSciNet  MATH  Google Scholar 

  31. Stewart, D.E., Convergence of a Time-Stepping Scheme for Rigid-Body Dynamics and Resolution of Painleve's Problem, Arch. Rational Mech. Anal., 1998, vol. 145, pp. 215–260.

    Article  MathSciNet  Google Scholar 

  32. Stewart, D.E., Rigid-Body Dynamics with Friction and Impact, SIAM Rev., 2000, vol. 42, no. 1, pp. 3–39.

    Article  MathSciNet  Google Scholar 

  33. Ballard, P. and Basseville, S., Existence and Uniqueness for Dynamical Unilateral Contact with Coulomb Friction: a Model Problem, Math. Model. Numer. Anal., 2005, vol. 39, no. 1, pp. 59–77.

    Article  MathSciNet  Google Scholar 

  34. Schatzman, M., Penalty Approximation of Painlevé Problem, Adv. Mech. Math., Nonsmooth Mech. Anal., 2006, vol. 12, pp. 129–143.

    Article  Google Scholar 

  35. Génot, F. and Brogliato, B., New Results on Painlevé Paradoxes, Eur. J. Mech. A/Solids, 1999, vol. 18, no. 18, pp. 653–678.

    Article  MathSciNet  Google Scholar 

  36. Pfeifer, F. and Glocker, C., Multi-Body Dynamics with Unilateral Constraints, New York: Wiley, 1996.

    Book  Google Scholar 

  37. Miller, B.M., Rubinovich, E.Ya., and Bentsman, J., Spatiotemporal Singular Transformation in Dynamical Systems with Impacts and its Use in Obtaning Generalized Solution of Painlevé Problem, Preprints 18th IFAC World Congr., Milano, Italy, August 28-September 2, 2011, pp. 3463–3473.

    Google Scholar 

  38. Miller, B.M., Rubinovich, E.Ya., and Bentsman, J., Singular Space-time Transformations. Toward one Method for Solving the Painlevé Problem, [tiJ. Math. Sci.}, 2016, vol. 219, no. 2, pp. 208–219.

    Article  MathSciNet  Google Scholar 

  39. Zhao, Z. The Painlevé Paradox Studied at a 3D Slender Rod, Multibody Syst. Dyn., 2008, vol. 19, pp. 323–343.

    Article  MathSciNet  Google Scholar 

  40. Utkin, V.I., Skol'zyashchie rezhimy i ikh primenenie v sistemakh s peremennoi strukturoi (Sliding Modes and Their Application in Systems with Variable Structure), Moscow: Nauka, 1974.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Russian Foundation for Basic Research, projects nos. 16-08-01285 and 16-08-01076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Miller.

Additional information

Russian Text © The Author(s), 2019, published in Avtomatika i Telemekhanika, 2019, No. 10, pp. 100–114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, B.M., Rubinovich, E.Y. Numerical Analysis of Shock Interactions with the Example of Painleve Paradox with a “Slanted” Fall of a Rod. Autom Remote Control 80, 1835–1846 (2019). https://doi.org/10.1134/S0005117919100059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919100059

Keywords

Navigation