Skip to main content
Log in

Piezothermoelastic responses of piezoelectric composite laminates with weak interfaces

  • Published:
Acta Mechanica Aims and scope Submit manuscript

An Erratum to this article was published on 21 April 2010

Abstract

Interfacial weak bonding affects piezothermoelastic responses of piezoelectric composite laminates. To simplify the complicated piezothermoelastic constitutive laws at a weak interface, three assumptions on interfacial bonding conditions are made. They are (i) the relations between the interfacial displacement jumps and the interfacial transverse stresses; (ii) the relation (electrically semi-permeable assumption) between the interfacial potential jump and the interfacial normal electric displacement; (iii) the relation between the interfacial temperature jump and the interfacial normal opening. These assumptions form a set of systematic descriptions of three-fields-coupling at a weak interface and result in a linear mathematical formulation. The piezothermoelastic solutions of cross-ply piezoelectric laminates with weak interfaces in cylindrical bending are deduced. Some benchmark numerical results are obtained, and the effects of interfacial weak bonding on the piezothermoelastic responses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu X., Liu D.: Interlayer shear slip theory for cross-ply laminates with nonrigid interfaces. AIAA J. 30, 1063–1073 (1992)

    Article  MATH  Google Scholar 

  2. Liu D., Xu L., Lu X.: Stress analysis of imperfect composite laminates with an interlaminar bonding theory. Int. J. Numer. Meth. Eng. 37, 2819–2839 (1994)

    Article  MATH  Google Scholar 

  3. Schmidt, R., Librescu, L.: A refined theory of anisotropic laminated composite plates featuring nonrigidly bonded interfaces. In: Proceedings of the 15th Canadian Congr. Appl. Mech., University of Victoria, pp. 234–235 (1995)

  4. Cheng Z.-Q., Jemah A.K., Williams F.W.: Theory for multilayered anisotropic plates with weakened interfaces. J. Eng. Mech. 63, 1019–1026 (1996)

    MATH  Google Scholar 

  5. Williams T.O., Addessio F.L.: A general theory for laminated plates with delaminations. Int. J. Solids Struct. 34, 2003–2024 (1997)

    Article  MATH  Google Scholar 

  6. Shu X., Soldatos K.P.: An accurate stress analysis model for angle-ply laminates with weak bonded layers. Acta Mech. 150, 161–178 (2001)

    Article  MATH  Google Scholar 

  7. Shu X., Soldatos K.P.: An accurate de-lamination model for weakly bonded laminates subjected to different sets of edge boundary conditions. Int. J. Mech. Sci. 43, 935–959 (2001)

    Article  MATH  Google Scholar 

  8. Soldatos K.P., Shu X.: Modelling of perfectly and weakly bonded laminated plates and shallow shells. Compos. Sci. Tech. 61, 247–260 (2001)

    Article  Google Scholar 

  9. Shu X.: Vibration and bending of antisymmetrically angly-ply laminated plates with perfectly and weakly bonded layers. Compos. Struct. 53, 245–255 (2001)

    Article  Google Scholar 

  10. Seeley C.E., Chattopadhyay A.: Experimental investigation of composite beams with piezoelectric actuation and debonding. Smart Mater. Struct. 7, 502–511 (1998)

    Article  Google Scholar 

  11. Seeley C.E., Chattopadhyay A.: Modeling of adaptive composites including debonding. Int. J. Solids Struct. 36, 1823–1843 (1999)

    Article  MATH  Google Scholar 

  12. Icardi U., Di Sciuva M., Librescu L.: Dynamic response of adaptive cross-ply cantilevers featuring interlaminar bonding imperfections. AIAA J. 38, 499–506 (2000)

    Article  Google Scholar 

  13. Sun D., Tong L., Atluri S.N.: Effects of piezoelectric sensor/actuator debonding on vibration control of smart beams. Int. J. Solids Struct. 38, 9033–9051 (2001)

    Article  MATH  Google Scholar 

  14. Sun D., Tong L.: Control stability analysis of smart beams with debonded piezoelectric actuator layer. AIAA J. 40, 1852–1859 (2002)

    Article  Google Scholar 

  15. Chen W.Q., Lee K.Y.: Exact solution of angle-ply piezoelectric laminates in cylindrical bending with interfacial imperfections. Compos. Struct. 65, 329–337 (2004)

    Article  Google Scholar 

  16. Chen W.Q., Lee K.Y.: Benchmark solution of angle-ply piezoelectric-laminated cylindrical panels in cylindrical bending with weak interfaces. Arch. Appl. Mech. 74, 466–476 (2005)

    Article  MATH  Google Scholar 

  17. Shu X.: Modelling of cross-ply piezoelectric composite laminates in cylindrical bending with interfacial shear slip. Int. J. Mech. Sci. 47, 1673–1692 (2005)

    Article  MATH  Google Scholar 

  18. Shu X.: Thermoelastic delamination of composite laminates with weak interfaces. Compos. Struct. 84, 310–318 (2008)

    Article  Google Scholar 

  19. Kapuria S., Dube G.P., Dumir P.C., Sengupta S.: Levy-type piezothermoelastic solution for hybrid plate using first order shear deformation theory. Compos. Part B 28, 535–546 (1997)

    Article  Google Scholar 

  20. Sharma J.N., Pal M., Chand D.: Three-dimensional vibration analysis of piezothermoelastic cylindrical panel. Int. J. Eng. Sci. 42, 1655–1673 (2004)

    Article  Google Scholar 

  21. Kapuria S., Achary G.G.S.: Benchmark 3D solution and assessment of a zigzag theory for free vibration of hybrid plates under initial electrothermomechanical stresses. Compos. Sci. Tech. 68, 297–311 (2008)

    Article  Google Scholar 

  22. Needleman A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525–531 (1987)

    Article  MATH  Google Scholar 

  23. Needleman A.: An analysis of decohesion along an imperfect interface. Int. J. Fract. 42, 21–40 (1990)

    Article  Google Scholar 

  24. Corigliano A.: Formulation, identification, and use of interface models in the numerical analysis of composite delamination. Int. J. Solids Struct. 30, 2779–2811 (1993)

    Article  MATH  Google Scholar 

  25. Zhang H., Gu Y., Zhong W.: Finite element analysis of the coupling effects of heat conduction and contact (in Chinese). Acta Solids Sinica 20, 217–224 (2000)

    Google Scholar 

  26. Benveniste Y.: On the decay of end effects in conduction phenomena: a sandwich strip with imperfect interfaces of low or high conductivity. J. Appl. Phys. 86, 1273–1279 (1999)

    Article  Google Scholar 

  27. Hashin Z.: Thin interphase/imperfect interface in conduction. J. Appl. Phys. 89, 2261–2267 (2001)

    Article  Google Scholar 

  28. Partonm V.Z.: Fracture mechanics of piezoelectric materials. Acta Astro. 3, 671–683 (1976)

    Article  Google Scholar 

  29. Deeg, W.F.: The analysis of dislocation crack and inclusion problems in piezoelectric solid. (Ph.D. thesis) Stanford, Stanford University (1980)

  30. Pak Y.E.: Crack extension force in a piezoelectric material. J. Appl. Mech. 57, 647–653 (1990)

    Article  MATH  Google Scholar 

  31. Hao T.H., Shen Z.Y.: A new electric boundary condition of electric fracture mechanics and its applications. Eng. Fract. Mech. 47, 793–802 (1994)

    Article  Google Scholar 

  32. Fan H., Sze K.Y.: A micro-mechanics model for imperfect interface in dielectric materials. Mech. Mater. 33, 363–373 (2001)

    Article  Google Scholar 

  33. Gem W.K., Kang Y.L.: Influence of weak interfaces on buckling of orthotropic piezoelectric rectangular laminates. Compos. Struct. 82, 290–294 (2008)

    Article  Google Scholar 

  34. Heyliger P.R., Brooks S.: Exact solutions for laminated piezoelectric plates in cylindrical bending. J. Appl. Mech. 63, 903–910 (1996)

    Article  MATH  Google Scholar 

  35. Pagano N.J.: Exact solution for rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4, 20–34 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Shu.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00707-010-0325-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, X. Piezothermoelastic responses of piezoelectric composite laminates with weak interfaces. Acta Mech 214, 327–340 (2010). https://doi.org/10.1007/s00707-010-0296-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0296-7

Keywords

Navigation