Skip to main content
Log in

MRI-based finite element modeling of head trauma: spherically focusing shear waves

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A powerful tool for investigating the physical process producing head trauma is finite element (FE) modeling. In this paper, we present a 3D FE model of the human head that accounts for important geometric characteristics of the various components within the human head through an efficient magnetic resonance imaging voxel-based mesh generation method. To validate the FE model, a previous cadaver experiment of frontal impact is simulated, and this is where heretofore unknown wave patterns are discovered. The model is run under either of two extreme assumptions concerning the head-neck junction—free or fixed—and the experimental measurements are well bounded by the computed pressures from the two boundary conditions. In both cases the impact gives rise to not only a fast pressure wave but also a slow and spherically convergent shear stress wave which is potentially more damaging to the brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fung Y.C.: The application of biomechanics to the understanding of injury and healing. In: Nahum, A.M., Melvin, J.W. (eds) Accidental Injury—Biomechanics and Prevention, pp. 1–11. Springer-Verlag, New York (2002)

    Google Scholar 

  2. Hanaway, J., Roberts, M.P., Woolsey, T.A., Gado, M.H., Roberts, M.P.J.: The Brain Atlas: A Visual Guide to the Human Central Nervous System. Fitzgerald Science Press, Bethesda (1998)

  3. Hargreaves, E.L.: Meninges, http://homepages.nyu.edu/~eh597/Meninges.htm (2006). Accessed 30 November 2009

  4. Zhang, L., Yang, K.H., Dwarampudi, R., Omori, K., Li, T., Chang, K., Hardy, W.N., Khalil, T.B., King, A.I.: Recent advance in brain injury research: a new human head model development and validation. Stapp Car Crash J. 369–393 (2001)

  5. Willinger R., Kang H.S., Diaw B.: Three-dimensional human head finite-element model validation against two experimental impacts. Ann. Biomed. Eng. 27, 403–410 (1999)

    Article  Google Scholar 

  6. Kleiven S., von Holst H.: Consequences of head size following trauma to the human head. J. Biomech. 35, 153–160 (2001)

    Article  Google Scholar 

  7. Horgan T.J., Gilchrist M.D.: Influence of FE model variability in predicting brain motion and intracranial pressure changes in head impact simulations. Int. J. Crashworthiness. 9, 401–418 (2004)

    Article  Google Scholar 

  8. Gilchrist M.D., O’Donoghue D.: Simulation of the development of frontal head impact injury. Comp. Mech. 26, 229–235 (2000)

    Article  MATH  Google Scholar 

  9. Cloots R.J.H., Gervaise H.M.T., van Dommelen J.A.W., Geers M.G.D.: Biomechanics of traumatic brain injury: influences of the morphologic heterogeneities of the cerebral cortex. Ann. Biomed. Eng. 36, 1203–1215 (2008)

    Article  Google Scholar 

  10. Lauret C., Hrapko M., van Dommelen J.A.W., Peters G.W.M., Wismans J.S.H.M.: Optical characterization of acceleration-induced strain fields in inhomogeneous brain slices. Med. Eng. Phys. 31, 392–399 (2009)

    Article  Google Scholar 

  11. Guldberg R.E., Hollister S.J., Charras G.T.: The accuracy of digital image-based finite element models. J. Biomech. Eng. 120, 289–295 (1998)

    Article  Google Scholar 

  12. Jacobs C.R., Mandell J.A., Beaupre G.S.: A comparative study of automatic finite element mesh generation techniques in orthopaedic biomechanics. Bioeng. Conf. ASME BED. 24, 512–514 (1993)

    Google Scholar 

  13. Boyd S.K., Müller R.: Smooth surface meshing for automated finite element model generation from 3D image data. J. Biomech. 39, 1287–1295 (2006)

    Article  Google Scholar 

  14. Taubin, G.: A signal processing approach to fair surface design. In: Proc. Siggraph’95 Conference, pp. 351–358 (1995)

  15. Taubin, G.: Geometric signal processing on polygonal meshes. Eurographic: State of the Art Report (2000)

  16. Khalil T.B., Hubbard R.P.: Parametric study of head response by finite element modeling. J. Biomech. 10, 119–132 (1977)

    Article  Google Scholar 

  17. Turitto V., Slack S.M.: Blood and related fluids. In: Black, J., Hastings, G. (eds) Handbook of Biomaterial Properties, pp. 114–124. Chapman & Hall, New York (1998)

    Google Scholar 

  18. Prange M.T., Margulies S.S.: Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124, 244–252 (2002)

    Article  Google Scholar 

  19. Zhang L., Yang K.H., King A.I.: A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126, 226–236 (2004)

    Article  Google Scholar 

  20. Nahum, A., Smith, R., Ward, C.: Intracranial pressure dynamics during head impact. In: Proc. 21st Stapp Car Crash Conf., pp. 339–366 (1977)

  21. Claessens, M., Sauren, F., Wismans J.: Modeling of the human head under impact conditions: a parametric study. In: Proc. 41st Stapp Car Crash Conf., pp. 315–328 (1997)

  22. Christensen R.M.: Theory of Viscoelasticity: An Introduction, p 194. Academic Press, New York (1982)

    Google Scholar 

  23. Graff K.F.: Wave Motion in Elastic Solids. Dover, New York (1991)

    Google Scholar 

  24. Helms G., Kallenberg K., Dechent P.: Contrast-driven approach to intracranial segmentation using a combination of a T2- and T1-weighted 3D MRI data sets. J. MRI. 24, 790–795 (2006)

    Google Scholar 

  25. Ostoja-Starzewski, M.: Microstructural Randomness and Scaling in Mechanics of Materials. Chapman & Hall/CRC Press Boca Roton, FL (2008)

  26. Li J., Ostoja-Starzewski M.: Fractal solids, product measures and fractional wave equations. Proc. R. Soc. Lond. A 465, 2521–2536 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bayly P.V., Ji S., Song S.K., Okamoto R.J., Massouros P., Genin G.M.: Measurement of strain in physical models of brain injury: a method based on HARP analysis of tagged magnetic resonance images (MRI). J. Biomech. Eng. 126, 1–6 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ostoja-Starzewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Ostoja-Starzewski, M. MRI-based finite element modeling of head trauma: spherically focusing shear waves. Acta Mech 213, 155–167 (2010). https://doi.org/10.1007/s00707-009-0274-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0274-0

Keywords

Navigation