Skip to main content

Advertisement

Log in

Finite Element Methods in Human Head Impact Simulations: A Review

  • State-of-the-Art Modeling and Simulation of the Brain’s Response to Mechanical Loads
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Head impacts leading to traumatic brain injury (TBI) present a major health risk today, projected to become the third leading cause of death by 2020. While finite element (FE) models of the human brain are important tools to understand and mitigate TBI, many unresolved issues remain that need to be addressed to improve these models. This work aims to provide readers with background information regarding the current state of research in this field as well as to present recent advancements made possible by improvements to computational resources. Specifically, this has manifested as a drive to introduce more details in FE models in the form of increased spatial resolution and improved material models such as nonlinear and anisotropic constitutive models. The need to work with high-resolution FE meshes is underlined by the dominant wavelengths involved in transient pressure and shear wave propagation and the ability to model the brain surface. We also discuss improvements to experimental validation techniques which allow for better calibrated models. We review these recent developments in detail, highlighting their contributions to the field as well as identifying open issues where more research is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Notes

  1. If \(I_1\) and \(I_2\) are the invariants of the right Cauchy-Green deformation, the isochoric (or volume preserving) portions are computed as \({\tilde{I}}_1 = I_1 J^{-1/3}\), \({\tilde{I}}_2 = I_2 J^{-2/3}\)

  2. If \({\mathbf {A}}\) is the unit vector of the mean fiber direction, then \({\tilde{I}}_{4} = {\mathbf {A}}\cdot \tilde{{\mathbf {C}}} {\mathbf {A}}\); \({\tilde{I}}_{5} = {\mathbf {A}}\cdot \tilde{{\mathbf {C}}}^2 {\mathbf {A}}\)

  3. Amount of anisotropy is expressed as Fractional Anisotropy (FA), a scalar that represents the restriction of diffusion to one axis; zero being unrestricted and one being fully restricted, i.e., totally anisotropic.

References

  1. Adams, J. H., D. Doyle, D. I. GRAHMA, A. E. Lawrence, D. R. McLellan, T. A. Gennarelli, M. Pastuszko, and T. Sakamoto. The contusion index: a reappraisal in human and experimental non-missile head injury. NNeuropathol. Appl. Neurobiol., 11(4):299–308, 1985.

    Article  CAS  PubMed  Google Scholar 

  2. Al-Bsharat, A. S., W. N. Hardy, K. H. Yang, T. B. Khalil, S. Tashman, and A. I. King. Brain/skull relative displacement magnitude due to blunt head impact: new experimental data and model. Technical report, SAE Technical Paper, 1999.

  3. Aldrich, E. F., H. M. Eisenberg, C. Saydjari, T. G. Luerssen, M. A. Foulkes, J. A. Jane, L. F. Marshall, A. Marmarou, and H. F. Young. Diffuse brain swelling in severely head-injured children: a report from the nih traumatic coma data bank. J. Neurosurg. 76(3):450–454, 1992.

    Article  CAS  PubMed  Google Scholar 

  4. Alshareef, A., J. S. Giudice, J. Forman, R. S. Salzar, and M. B. Panzer. A novel method for quantifying human in situ whole brain deformation under rotational loading using sonomicrometry. J. Neurotrauma 35(5):780–789, 2018.

    Article  PubMed  Google Scholar 

  5. Arbogast, K. B., and S. S. Margulies. Material characterization of the brainstem from oscillatory shear tests. J. Biomech. 31(9):801–807, 1998.

    Article  CAS  PubMed  Google Scholar 

  6. Arbogast, K. B., K. L. Thibault, B. S. Pinheiro, K. I. Winey, and S. S. Margulies. A high-frequency shear device for testing soft biological tissues. J. Biomech. 30(7):757–759, 1997.

    Article  CAS  PubMed  Google Scholar 

  7. Arfanakis, K., V. M. Haughton, J. D. Carew, B. P. Rogers, R. J. Dempsey, and M. E. Meyerand. Diffusion tensor mr imaging in diffuse axonal injury. Am. J. Neuroradiol. 23(5):794–802, 2002.

    PubMed  PubMed Central  Google Scholar 

  8. Baeck, K., J. Goffin, and J. V. Sloten. The use of different csf representations in a numerical head model and their effect on the results of fe head impact analyses. In European LS-DYNA Users Conference 2011. Proceedings 8th European LS-DYNA Users Conference, Strasbourg, France, 2011.

  9. Bain, A. C., and D. F. Meaney. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 122(6):615–622, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Bass, C. R., M. B. Panzer, K. A. Rafaels, G. Wood, J. Shridharani, and B. Capehart. Brain injuries from blast. Ann. Biomed. Eng. 40(1):185–202, 2012.

    Article  PubMed  Google Scholar 

  11. Bazarian, J. J., J. Mcclung, M. N. Shah, Y. T. Cheng, W. Flesher, and J. Kraus. Mild traumatic brain injury in the United States, 1998–2000. Brain Inj. 19(2):85–91, 2005.

    Article  PubMed  Google Scholar 

  12. Belytschko, T., J. Fish, and B. E. Engelmann. A finite element with embedded localization zones. Comput. Methods Appl. Mech. Eng. 70(1):59–89, 1988.

    Article  Google Scholar 

  13. Bilston, L. E., Z. Liu, and N. Phan-Thien. Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38(4):335–345, 2001.

    CAS  PubMed  Google Scholar 

  14. Bradshaw, D. R. S., and C. L. Morfey. Pressure and shear response in brain injury models. In Proceedings of the 17th international technical conference on the enhanced safety of vehicles, Amsterdam, The Netherlands, 2001.

  15. Budday, S., G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck, J. Kohnert, M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, et al. Mechanical characterization of human brain tissue. Acta Biomater. 48:319–340, 2017.

    Article  CAS  PubMed  Google Scholar 

  16. Bullock, R., and D. I. Graham. Non-penetrating injuries of the head. Cooper GJ, Dudley HAF, Gann DS et al Scientific Foundations of Trauma. Butterworth Heinemann, pp. 101–126, 1997.

  17. Centers for Disease Control Prevention, et al. Report to Congress on Mild Traumatic Brain Injury in the United States: Steps to Prevent a Serious Public Health Problem. Atlanta, GA: Centers for Disease Control and Prevention, p. 45, 2003.

  18. Chafi, M. S., V. Dirisala, G. Karami, and M. Ziejewski. A finite element method parametric study of the dynamic response of the human brain with different cerebrospinal fluid constitutive properties. Proc. Inst. Mech. Eng. H 223(8):1003–1019, 2009.

    Article  PubMed  Google Scholar 

  19. Chatelin, S., A. Constantinesco, and R. Willinger. Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47(5-6):255–276, 2010.

    Article  PubMed  Google Scholar 

  20. Chatelin, S., C. Deck, F. Renard, S. Kremer, C. Heinrich, J.-P. Armspach, and R. Willinger. Computation of axonal elongation in head trauma finite element simulation. J. Mech. Behav. Biomed. Mater. 4(8):1905–1919, 2011.

    Article  PubMed  Google Scholar 

  21. Chen, Y., and M. Ostoja-Starzewski. Mri-based finite element modeling of head trauma: spherically focusing shear waves. Acta Mech. 213(1-2):155–167, 2010.

    Article  Google Scholar 

  22. Chen, Y., B. Sutton, C. Conway, S. P. Broglio, and M. Ostoja-Starzewski. Brain deformation under mild impact: Magnetic resonance imaging-based assessment and finite element study. Int. J. Numer. Anal. Model. B 3(1):20–35, 2012.

    Google Scholar 

  23. Cheng, S., E. C. Clarke, and L. E. Bilston. Rheological properties of the tissues of the central nervous system: a review. Med. Eng. Phys. 30(10):1318–1337, 2008.

    Article  PubMed  Google Scholar 

  24. Chu, C.-S., M.-S. Lin, H.-M. Huang, and M.-C. Lee. Finite element analysis of cerebral contusion. J. Biomech. 27(2):187–194, 1994.

    Article  CAS  PubMed  Google Scholar 

  25. Clemmer, J., R. Prabhu, J. Chen, E. Colebeck, L. B. Priddy, M. Mccollum, B. Brazile, W. Whittington, J. L. Wardlaw, H. Rhee, et al. Experimental observation of high strain rate responses of porcine brain, liver, and tendon. J. Mech. Med. Biol., 16(03):1650032, 2016.

    Article  Google Scholar 

  26. Cloots, R. J. H., J. A. W. Van Dommelen, S. Kleiven, and M. G. D. Geers. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads. Biomech. Model. Mechanobiol. 12(1):137–150, 2013.

    Article  CAS  PubMed  Google Scholar 

  27. Cloots, R. J. H., H. M. T. Gervaise, J. A. W. Van Dommelen, and M. G. D. Geers. Biomechanics of traumatic brain injury: influences of the morphologic heterogeneities of the cerebral cortex. Ann. Biomed.Eng. 36(7):1203, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coats, B., S. S. Margulies, and S. Ji. Parametric study of head impact in the infant. Technical report, SAE Technical Paper, 2007.

  29. Denny-Brown, D. E., and W. R. Russell. Experimental concussion:(section of neurology). Proc. R. Soc. Med. 34(11):691, 1941.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Despotović, I., B. Goossens, and W. Philips. Mri segmentation of the human brain: challenges, methods, and applications. Comput. Math. Methods Med., 2015.

  31. Destrade, M., B. M. Donald, J. G. Murphy, and G. Saccomandi. At least three invariants are necessary to model the mechanical response of incompressible, transversely isotropic materials. Comput. Mech. 52(4):959–969, 2013.

    Article  Google Scholar 

  32. Dixit, P., and G. R. Liu. A review on recent development of finite element models for head injury simulations. Arch. Comput. Methods Eng. 24(4):979–1031, 2017.

    Article  Google Scholar 

  33. Doblaré, M., J. M. Garcıa, and M. J. Gómez. Modelling bone tissue fracture and healing: a review. Eng. Fract. Mech. 71(13–14):1809–1840, 2004.

    Article  Google Scholar 

  34. Van Dommelen, J. A. W., T. P. J. Van der Sande, M. Hrapko, and G. W. M. Peters. Mechanical properties of brain tissue by indentation: interregional variation. J. Mech. Behav. Biomed. Mater. 3(2):158–166, 2010.

    Article  PubMed  Google Scholar 

  35. Donnelly, B. R., and J. Medige. Shear properties of human brain tissue. J. Biomech. Eng. 119(4):423–432, 1997.

    Article  CAS  PubMed  Google Scholar 

  36. Fallenstein, G. T., V. D. Hulce, and J. W. Melvin. Dynamic mechanical properties of human brain tissue. J. Biomech. 2(3):217–226, 1969.

    Article  CAS  PubMed  Google Scholar 

  37. Famaey, N., Z. Y. Cui, G. U. Musigazi, J. Ivens, B. Depreitere, E. Verbeken, and J. Vander Sloten. Structural and mechanical characterisation of bridging veins: A review. J. Mech. Behav. Biomed. Mater. 41:222–240, 2015.

    Article  PubMed  Google Scholar 

  38. Faul, M., M. M. Wald, L. Xu, and V. G. Coronado. Traumatic brain injury in the united states; emergency department visits, hospitalizations, and deaths, 2002–2006, 2010.

  39. Feng, Y., C.-H. Lee, L. Sun, S. Ji, and X. Zhao. Characterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modeling. J. Mech. Behav. Biomed. Mater. 65:490–501, 2017.

    Article  PubMed  Google Scholar 

  40. Feng, Y., R. J. Okamoto, G. M. Genin, and P. V. Bayly. On the accuracy and fitting of transversely isotropic material models. J. Mech. Behav. Biomed. Mater. 61:554–566, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Feng, Y., R. J. Okamoto, R. Namani, G. M. Genin, and P. V. Bayly. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23:117–132, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fievisohn, E., Z. Bailey, A. Guettler, and P. VandeVord. Primary blast brain injury mechanisms: current knowledge, limitations, and future directions. J. Biomech. Eng. 140(2):020806, 2018.

    Article  Google Scholar 

  43. Finan, J. D., S. N. Sundaresh, B. S. Elkin, G. M. McKhann II, and B. Morrison III. Regional mechanical properties of human brain tissue for computational models of traumatic brain injury. Acta Biomater. 55:333–339, 2017.

    Article  PubMed  Google Scholar 

  44. Franceschini, G., D. Bigoni, P. Regitnig, and G. A. Holzapfel. Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54(12):2592–2620, 2006.

    Article  Google Scholar 

  45. Gadd, C. W. Use of a weighted-impulse criterion for estimating injury hazard. Technical report, SAE Technical Paper, 1966.

  46. Ganpule, S., N. P. Daphalapurkar, K. T. Ramesh, A. K. Knutsen, D. L. Pham, P. V. Bayly, and J. L. Prince. A three-dimensional computational human head model that captures live human brain dynamics. J. Neurotrauma 34(13):2154–2166, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Garimella, H. I., and R. H. Kraft. Modeling the mechanics of axonal fiber tracts using the embedded finite element method. Int. J. Numer. Methods Biomed. Eng. 33(5):e2823, 2017.

    Google Scholar 

  48. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6):15–35, 2006.

    Article  PubMed  Google Scholar 

  49. Gefen, A., and S. S. Margulies. Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37(9):1339–1352, 2004.

    Article  PubMed  Google Scholar 

  50. Gennarelli, T. A., L. E. Thibault, and D. I. Graham. Diffuse axonal injury: an important form of traumatic brain damage. The Neuroscientist 4(3):202–215, 1998.

    Article  Google Scholar 

  51. Gennarelli, T. A., L. E. Thibault, J. H. Adams, D. I. Graham, C. J. Thompson, and R. P. Marcincin. Diffuse axonal injury and traumatic coma in the primate. Ann. Neurol. 12(6):564–574, 1982.

    Article  CAS  PubMed  Google Scholar 

  52. Gennerelli, T. A. Comparison of translational and rotational head motions in experimental cerebral concussion. In Proceedings of 15th Stapp Car Crash Conference, 1971.

  53. Gentry, L.R., J. C. Godersky, and B. Thompson. MR imaging of head trauma: review of the distribution and radiopathologic features of traumatic lesions. Am. J. Roentgenol. 150(3):663–672, 1988.

    Article  CAS  Google Scholar 

  54. Gentry, L. R., J. C. Godersky, B. Thompson, and V. D. Dunn. Prospective comparative study of intermediate-field MR and CT in the evaluation of closed head trauma. Am. J. Roentgenol. 150(3):673–682, 1988.

    Article  CAS  Google Scholar 

  55. Gerber, J. I., H. T. Garimella, and R. H. Kraft. Computation of history-dependent mechanical damage of axonal fiber tracts in the brain: towards tracking sub-concussive and occupational damage to the brain. bioRxiv [Preprint], p. 346700, 2018.

  56. Ghajari, M., P. J. Hellyer, and D. J. Sharp. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology. Brain 140(2):333–343, 2017.

    Article  PubMed  Google Scholar 

  57. Giordano, C., R. J. H. Cloots, J. A. W. Van Dommelen, and S. Kleiven. The influence of anisotropy on brain injury prediction. J. Biomech. 47(5):1052–1059, 2014.

    Article  CAS  PubMed  Google Scholar 

  58. Giordano, C., and S. Kleiven. Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue. J. R. Soc. Interface 11(91):20130914, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Giordano, C., S. Zappalà, and S. Kleiven. Anisotropic finite element models for brain injury prediction: the sensitivity of axonal strain to white matter tract inter-subject variability. Biomech. Model. Mechanobiol. 16(4):1269–1293, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Giordano, C., and S. Kleiven. Development of an unbiased validation protocol to assess the biofidelity of finite element head models used in prediction of traumatic brain injury. Technical report, SAE Technical Paper, 2016.

  61. Giordano, C., and S. Kleiven. Evaluation of axonal strain as a predictor for mild traumatic brain injuries using finite element modeling. Technical report, SAE Technical Paper, 2014.

  62. Graham, D. I., J. H. Adams, J. A. R. Nicoll, W. L. Maxwell, and T. A. Gennarelli. The nature, distribution and causes of traumatic brain injury. Brain Pathol. 5(4):397–406, 1995.

    Article  CAS  PubMed  Google Scholar 

  63. Gurdjian, E. S., H. R. Lissner, J. E. Webster, F. R. Latimer, and B. F. Haddad. Studies on experimental concussion relation of physiologic effect to time duration of intracranial pressure increase at impact. Neurology 4(9):674–674, 1954.

    Article  CAS  PubMed  Google Scholar 

  64. Hardy, W. N., C. D. Foster, M. J. Mason, K. H. Yang, A. I. King, and S. Tashman. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45:337–368, 2001.

    CAS  PubMed  Google Scholar 

  65. Hirt, C. W., A. A. Amsden, and J. L. Cook. An arbitrary lagrangian-eulerian computing method for all flow speeds. J. Comput. Phys. 14(3):227–253, 1974.

    Article  Google Scholar 

  66. Ho, J., and S. Kleiven. Dynamic response of the brain with vasculature: a three-dimensional computational study. J. Biomech. 40(13):3006–3012, 2007.

    Article  PubMed  Google Scholar 

  67. Ho, J., and S. Kleiven. Can sulci protect the brain from traumatic injury? J. Biomech. 42(13):2074–2080, 2009.

    Article  PubMed  Google Scholar 

  68. Horgan, T. J., and M. D. Gilchrist. The creation of three-dimensional finite element models for simulating head impact biomechanics. Int. J. Crashworthiness, 8(4):353–366, 2003.

    Article  Google Scholar 

  69. Hosey, R. R., and Y. K. Liu. A homeomorphic finite element model of the human head and neck. Finite Elem. Biomech. pp. 379–401, 1982.

  70. Hrapko, M., J. A. W. Van Dommelen, G. W. M. Peters, and J. S. H. M. Wismans. The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology 43(5):623–636, 2006.

    CAS  PubMed  Google Scholar 

  71. Ji, S., W. Zhao, J. C. Ford, J. G. Beckwith, R. P. Bolander, R. M. Greenwald, L. A. Flashman, K. D. Paulsen, and T. W. McAllister. Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion. J. Neurotrauma 32(7):441–454, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jin, J.-X., J.-Y. Zhang, X.-W. Song, H. Hu, X.-Y. Sun, and Z.-H. Gao. Effect of cerebrospinal fluid modeled with different material properties on a human finite element head model. J. Mech. Med. Biol. 15(03):1550027, 2015.

    Article  Google Scholar 

  73. Jin, X., F. Zhu, H. Mao, M. Shen, and K. H. Yang. A comprehensive experimental study on material properties of human brain tissue. J. Biomech. 46(16):2795–2801, 2013.

    Article  PubMed  Google Scholar 

  74. Johnson, K. L., S. Chowdhury, W. B. Lawrimore, Y. Mao, A. Mehmani, R. Prabhu, G. A. Rush, and M. F. Horstemeyer. Constrained topological optimization of a football helmet facemask based on brain response. Mater. Design 111:108–118, 2016.

    Article  Google Scholar 

  75. Johnson, C. L., M. D. J. McGarry, A. A. Gharibans, J. B. Weaver, K. D. Paulsen, H. Wang, W. C. Olivero, B. P. Sutton, and J. G. Georgiadis. Local mechanical properties of white matter structures in the human brain. Neuroimage 79:145–152, 2013.

    Article  PubMed  Google Scholar 

  76. Joldes, G. R., A. L. Lanzara, A. Wittek, B. Doyle, and K. Miller. Traumatic brain injury: an investigation into shear waves interference effects. In Computational Biomechanics for Medicine, pp. 177–186. Springer, 2016.

  77. Joumaa, H., and M. Ostoja-Starzewski. Acoustic-elastodynamic interaction in isotropic fractal media. Eur. Phys. J. Special Top. 222(8):1951–1960, 2013.

    Article  Google Scholar 

  78. Kalmanti, E., and T. G. Maris. Fractal dimension as an index of brain cortical changes throughout life. In Vivo 21(4):641–646, 2007.

    PubMed  Google Scholar 

  79. King, A. I., J. S. Ruan, C. Zhou, W. N. Hardy, and T. B. Khalil. Recent advances in biomechanics of brain injury research: a review. J. Neurotrauma 12(4):651–658, 1995.

    Article  CAS  PubMed  Google Scholar 

  80. King, A. I., K. H. Yang, L. Zhang, W. Hardy, and D. C. Viano. Is head injury caused by linear or angular acceleration. In IRCOBI Conference, pp. 1–12. Lisbon, Portugal, 2003.

  81. Kiselev, V. G., K. R. Hahn, and D. P. Auer. Is the brain cortex a fractal? Neuroimage 20(3):1765–1774, 2003.

    Article  PubMed  Google Scholar 

  82. Kleiven, S. Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. IInt. J. Crashworthiness 11(1):65–79, 2006.

    Article  Google Scholar 

  83. Kleiven, S., and W. N. Hardy. Correlation of an fe model of the human head with local brain motion: Consequences for injury prediction. Stapp Car Crash J. 46:123–144, 2002.

    PubMed  Google Scholar 

  84. Kleiven, S., and H. von Holst. Consequences of head size following trauma to the human head. J. Biomech. 35(2):153–160, 2002.

    Article  PubMed  Google Scholar 

  85. Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Technical report, SAE Technical Paper, 2007.

  86. Kraft, R. H., P. J. Mckee, A. M. Dagro, and S. T. Grafton. Combining the finite element method with structural connectome-based analysis for modeling neurotrauma: connectome neurotrauma mechanics. PLoS Comput. Biol. 8(8):e1002619, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kruse, S. A., G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack Jr, and R. L. Ehman. Magnetic resonance elastography of the brain. Neuroimage 39(1):231–237, 2008.

    Article  PubMed  Google Scholar 

  88. Lindgren, S., and L. Rinder. Experimental studies in head injury. Biophysik 3(2):174–180, 1966.

    Article  CAS  PubMed  Google Scholar 

  89. Losoi, H., N. D. Silverberg, M. Wäljas, S. Turunen, E. Rosti-Otajärvi, M. Helminen, T. M. Luoto, J. Julkunen, J. Öhman, and G. L. Iverson. Recovery from mild traumatic brain injury in previously healthy adults. J. Neurotrauma 33(8):766–776, 2016.

    Article  PubMed  Google Scholar 

  90. MacManus, D. B., J. G. Murphy, and M. D. Gilchrist. Mechanical characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatus. J. Mech. Behav. Biomed. Mater. 87:256–266, 2018.

  91. Madhukar, A., Y. Chen, and M. Ostoja-Starzewski. Effect of cerebrospinal fluid modeling on spherically convergent shear waves during blunt head trauma. Int. J. Numer. Methods Biomed. Eng. 33(12):e2881, 2017.

    Article  Google Scholar 

  92. Mao, H., H. Gao, L. Cao, V. V. Genthikatti, and K. H. Yang. Development of high-quality hexahedral human brain meshes using feature-based multi-block approach. Comput. Methods Biomech. Biomed. Eng. 16(3):271–279, 2013.

    Article  Google Scholar 

  93. Mao, H., L. Zhang, B. Jiang, V. V. Genthikatti, X. Jin, F. Zhu, R. Makwana, A. Gill, G. Jandir, A. Singh, et al. Development of a finite element human head model partially validated with thirty five experimental cases. J. Biomech. Eng. 135(11):111002, 2013.

    Article  PubMed  Google Scholar 

  94. Mao, H. Modeling the head for impact scenarios. In Basic Finite Element Method as Applied to Injury Biomechanics, pp. 469–502. Elsevier, 2018.

  95. Margulies, S. S., L. E. Thibault, and T. A. Gennarelli. Physical model simulations of brain injury in the primate. J. Biomech. 23(8):823–836, 1990.

    Article  CAS  PubMed  Google Scholar 

  96. McIlwain, H., and H. S. Bachelard. Biochemistry and the central nervous system. 1972.

  97. Meaney, D. F., B. Morrison, and C. D. Bass. The mechanics of traumatic brain injury: a review of what we know and what we need to know for reducing its societal burden. J. Biomech. Eng. 136(2):021008, 2014.

    Article  PubMed  Google Scholar 

  98. Meaney, D. F., and D. H. Smith. Biomechanics of concussion. Clin. Sports Med., 30(1):19–31, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mendis, K. K., R. L. Stalnaker, and S. H. Advani. A constitutive relationship for large deformation finite element modeling of brain tissue. J. Biomech. Eng. 117(3):279–285, 1995.

    Article  CAS  PubMed  Google Scholar 

  100. Miller, K., and K. Chinzei. Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30(11-12):1115–1121, 1997.

    Article  CAS  PubMed  Google Scholar 

  101. Miller, K., K. Chinzei, G. Orssengo, and P. Bednarz. Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33(11):1369–1376, 2000.

    Article  CAS  PubMed  Google Scholar 

  102. Miller, L. E., J. E. Urban, and J. D. Stitzel. Development and validation of an atlas-based finite element brain model. Biomech. Model. Mechanobiol. 15(5):1201–1214, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Miller, L. E., J. E. Urban, and J. D. Stitzel. Validation performance comparison for finite element models of the human brain. Comput. Methods Biomech. Biomed. Eng. 20(12):1273–1288, 2017.

    Article  Google Scholar 

  104. Morrison III, B., H. L. Cater, C. C. B. Wang, F. C. Thomas, et al. A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J. 47:93, 2003.

    PubMed  Google Scholar 

  105. Nahum, A. M., R. Smith, and C. C. Ward. Intracranial pressure dynamics during head impact. Technical report, SAE Technical Paper, 1977.

  106. Newman, J. A., and N. Shewchenko. A proposed new biomechanical head injury assessment function-the maximum power index. Technical report, SAE Technical Paper, 2000.

  107. Ng, H. K., R. D. Mahaliyana, and W. S. Poon. The pathological spectrum of diffuse axonal injury in blunt head trauma: assessment with axon and myelin stains. Clin. Neurol. Neurosurg. 96(1):24–31, 1994.

    Article  CAS  PubMed  Google Scholar 

  108. Nicolle, S., M. Lounis, and R. Willinger. Shear properties of brain tissue over a frequency range relevant for automotive impact situations: new experimental results. Technical report, SAE Technical Paper, 2004.

  109. Ning, X., Q. Zhu, Y. Lanir, and S. S Margulies. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. J. Biomech. Eng. 128(6):925–933, 2006.

    Article  PubMed  Google Scholar 

  110. Ommaya, A. K. Mechanical properties of tissues of the nervous system. J. Biomech. 1(2):127–138, 1968.

    Article  CAS  PubMed  Google Scholar 

  111. Ommaya, A. K. and T. A. Gennarelli. Cerebral concussion and traumatic unconsciousness: correlation of experimental and clinical observations on blunt head injuries. Brain 97(4):633–654, 1974.

    Article  CAS  PubMed  Google Scholar 

  112. Ortiz, M., Y. Leroy, and A. Needleman. A finite element method for localized failure analysis. Comput. Methods Appl. Mech. Eng. 61(2):189–214, 1987.

    Article  Google Scholar 

  113. Peters, G. W. M., J. H. Meulman, and A. A. H. J. Sauren. The applicability of the time/temperature superposition principle to brain tissue. Biorheology 34(2):127–138, 1997.

    Article  CAS  PubMed  Google Scholar 

  114. Post, A., and T. B. Hoshizaki. Rotational acceleration, brain tissue strain, and the relationship to concussion. J. Biomech. Eng. 137(3):030801, 2015.

    Article  Google Scholar 

  115. Prange, M. T. and S. S. Margulies. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124(2):244–252, 2002.

    Article  PubMed  Google Scholar 

  116. Pudenz, R. H., and C. H. Shelden. The lucite calvariuma method for direct observation of the brain: II. cranial trauma and brain movement. J. Neurosurg. 3(6):487–505, 1946.

    Article  CAS  PubMed  Google Scholar 

  117. Qian, L., H. Zhao, Y. Guo, Y. Li, M. Zhou, L. Yang, Z. Wang, and Y. Sun. Influence of strain rate on indentation response of porcine brain. J. Mech. Behav. Biomed. Mater.J. Mech. Behav. Biomed. Mater. 82:210–217, 2018.

    Article  PubMed  Google Scholar 

  118. Rashid, B., M. Destrade, and M. D. Gilchrist. Mechanical characterization of brain tissue in simple shear at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 28:71–85, 2013.

    Article  PubMed  Google Scholar 

  119. Rashid, B., M. Destrade, and M. D. Gilchrist. Mechanical characterization of brain tissue in tension at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 33:43–54, 2014.

    Article  PubMed  Google Scholar 

  120. de Rooij, R., and E. Kuhl. Constitutive modeling of brain tissue: current perspectives. Appl. Mech. Rev. 68(1):010801, 2016.

    Article  Google Scholar 

  121. Ruan, J. S., T. Khalil, and A. I. King. Human head dynamic response to side impact by finite element modeling. J. Biomech.Eng. 113(3):276–283, 1991.

    Article  CAS  PubMed  Google Scholar 

  122. Sabet, A. A., E. Christoforou, B. Zatlin, G. M Genin, and P. V. Bayly. Deformation of the human brain induced by mild angular head acceleration. J. Biomech. 41(2):307–315, 2008.

    Article  PubMed  Google Scholar 

  123. Sahoo, D., C. Deck, and R. Willinger. Development and validation of an advanced anisotropic visco-hyperelastic human brain fe model. J. Mech. Behav. Biomed. Mater. 33:24–42, 2014.

    Article  PubMed  Google Scholar 

  124. Scofield, D. E., S. P. Proctor, J. R. Kardouni, O. T. Hill, and C. J. McKinnon. Risk factors for mild traumatic brain injury and subsequent post-traumatic stress disorder and mental health disorders among united states army soldiers. J. Neurotrauma 34(23):3249–3255, 2017.

    Article  Google Scholar 

  125. Shatsky, S. A., D. E. Evans, F. Miller, and A. N. Martins. High-speed angiography of experimental head injury. J. Neurosurg. 41(5):523–530, 1974.

    Article  CAS  PubMed  Google Scholar 

  126. Shaw, N. A. The neurophysiology of concussion. Prog. Neurobiol. 67(4):281–344, 2002.

    Article  CAS  PubMed  Google Scholar 

  127. Shuck, L. Z., and S. H. Advani. Rheologioal response of human brain tissue in shear. J. Fluids Eng. Trans. ASME 94(4):905–911, 1972.

    Article  Google Scholar 

  128. Smith, D. H., M. Nonaka, R. Miller, M. Leoni, X.-H. Chen, D. Alsop, and D. F. Meaney. Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J. Neurosurg. 93(2):315–322, 2000.

    Article  CAS  PubMed  Google Scholar 

  129. Takhounts, E. G., R. H. Eppinger, J. Q. Campbell, R. E. Tannous, et al. On the development of the simon finite element head model. Stapp Car Crash J. 47:107, 2003.

    PubMed  Google Scholar 

  130. Takhounts, E. G., S. A. Ridella, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (simon) finite element head model. Technical report, SAE Technical Paper, 2008.

  131. Taylor, C. A., J. M. Bell, M. J. Breiding, and L. Xu. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths-united states, 2007 and 2013. Morb. Mortal. Wkly. Rep. Surveill. Summ. 66(9):1–16, 2017.

    Google Scholar 

  132. Thibault, L. E., and T. A. Gennarelli. Brain injury: an analysis of neural and neurovascular trauma in the nonhuman primate. In Association for the Advancement of Automotive Medicine (AAAM), Conference, 34th, 1990, Scottsdale, Arizona, USA, 1990.

  133. Toma, M., and P. D. H. Nguyen. Fluid–structure interaction analysis of cerebrospinal fluid with a comprehensive head model subject to a rapid acceleration and deceleration. Brain Inj. 32:1576–1584, 2018.

    Article  PubMed  Google Scholar 

  134. Tse, K. M., S. P. Lim, V. B. C. Tan, and H. P. Lee. A review of head injury and finite element head models. Am. J. Eng. Technol. Soc. 1(5):28–52, 2014.

    Google Scholar 

  135. Tse, K. M., L. B. Tan, S. J. Lee, S. P. Lim, and H. P. Lee. Development and validation of two subject-specific finite element models of human head against three cadaveric experiments. Int. J. Numer. Methods Biomed. Eng. 30(3):397–415, 2014.

    Article  Google Scholar 

  136. Velardi, F., F. Fraternali, and M. Angelillo. Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5(1):53–61, 2006.

    Article  CAS  PubMed  Google Scholar 

  137. Versace, J. A review of the severity index. Technical report, SAE Technical Paper, 1971.

  138. Viana, F. A. C., T. W. Simpson, V. Balabanov, and V. Toropov. Special section on multidisciplinary design optimization: metamodeling in multidisciplinary design optimization: how far have we really come? AIAA J. 52(4):670–690, 2014.

    Article  Google Scholar 

  139. Viano, D. C., I. R. Casson, E. J. Pellman, L. Zhang, A. I. King, and K. H. Yang. Concussion in professional football: brain responses by finite element analysis: part 9. Neurosurgery 57(5):891–916, 2005.

    Article  PubMed  Google Scholar 

  140. Ward, C. C. and R. B. Thompson. The development of a detailed finite element brain model. Technical report, SAE Technical Paper, 1975.

  141. Willinger, R., and D. Baumgartner. Human head tolerance limits to specific injury mechanisms. Int. J. Crashworthiness 8(6):605–617, 2003.

    Article  Google Scholar 

  142. Willinger, R., H.-S. Kang, and B. Diaw. Three-dimensional human head finite-element model validation against two experimental impacts. Ann. Biomed. Eng. 27(3):403–410, 1999.

    Article  CAS  PubMed  Google Scholar 

  143. Wright, R. M., A. Post, B. Hoshizaki, and K. T. Ramesh. A multiscale computational approach to estimating axonal damage under inertial loading of the head. J. Neurotrauma 30(2):102–118, 2013.

    Article  PubMed  Google Scholar 

  144. Yan, W., and O. D. Pangestu. A modified human head model for the study of impact head injury. Comput. Methods Biomech. Biomed. Eng. 14(12):1049–1057, 2011.

    Article  Google Scholar 

  145. Yang, B., K.-M. Tse, N. Chen, L.-B. Tan, Q.-Q. Zheng, H.-M. Yang, M. Hu, G. Pan, and H.-P. Lee. Development of a finite element head model for the study of impact head injury. BioMed Res. Int., 2014.

  146. Yang, K. H., J. Hu, N. A. White, A. I. King, C. C. Chou, and P. Prasad. Development of numerical models for injury biomechanics research: a review of 50 years of publications in the stapp car crash conference. Technical report, SAE Technical Paper, 2006.

  147. Zhang, L., K. H. Yang, R. Dwarampudi, K. Omori, T. Li, K. Chang, W. N. Hardy, T. B. Khalil, and A. I. King. Recent advances in brain injury research: a new human head model development and validation. Stapp Car Crash J. 45(11):369–394, 2001.

    CAS  PubMed  Google Scholar 

  148. Zhang, L., K. H. Yang, and A. I. King. Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma 18(1):21–30, 2001.

    Article  CAS  PubMed  Google Scholar 

  149. Zhang, L., K. H. Yang, and A. I. King. A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126(2):226–236, 2004.

    Article  PubMed  Google Scholar 

  150. Zhao, W., B. Choate, and S. Ji. Material properties of the brain in injury-relevant conditions—experiments and computational modeling. J. Mech. Behav. Biomed. Mater. 80:222–234, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zhao, W., J. C. Ford, L. A. Flashman, T. W. McAllister, and S. Ji. White matter injury susceptibility via fiber strain evaluation using whole-brain tractography. J. Neurotrauma 33(20):1834–1847, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Zhao, W., and S. Ji. Parametric investigation of regional brain strain responses via a pre-computed atlas. In IRCOBI Conference, pp. 208–220, 2015.

  153. Zhou, C., T. B. Khalil, and A. I. King. A new model comparing impact responses of the homogeneous and inhomogeneous human brain. Technical report, SAE Technical Paper, 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ostoja-Starzewski.

Additional information

Associate Editor Mark Horstemeyer oversaw the review of this article.

Appendix A: List of Related Review Articles

Appendix A: List of Related Review Articles

Here we list related review articles—in chronological order—that the reader may find interesting to explore further.

  1. 1.

    King et al. (1995): Review of early finite element models used in impact studies.79

  2. 2.

    Nigel A. Shaw (2002): Detailed review of neurophysiology of concussion.126

  3. 3.

    Doblaré et al. (2004): Computational modeling of bone fracture and healing.33

  4. 4.

    Yang et al. (2006): Compilation of numerical models, including head models, used in car-crash analysis.146

  5. 5.

    Cheng et al. (2008): Rheological properties of tissues of the central nervous system.23

  6. 6.

    Chatelin et al. (2010): Comparison of in vivo and in vitro techniques used to characterize brain tissue.19

  7. 7.

    Meaney and Smith (2011): Introduction to the biomechanics of concussions.98

  8. 8.

    Bass et al. (2012): Brain injuries arising from blast waves.10

  9. 9.

    Meaney et al. (2014): Recent advances in understanding mTBI caused from blast loadings as well as biomechanics of TBI.97

  10. 10.

    Despotović et al. (2015): Methods and challenges inherent to MRI segmentation.30

  11. 11.

    Tse et al. (2015): Review of finite element models developed in the past decade, along with detailed listings of material properties and head injury criteria.134

  12. 12.

    Post and Hoshizaki (2015): Relation between linear and rotational accelerations on injury criteria.114

  13. 13.

    Famaey et al. (2015): Mechanical characteristics, constitutive models and failure criteria of bridging veins.37

  14. 14.

    Rooij and Kuhl (2016): Detailed review of constitute models proposed to model brain tissue.120

  15. 15.

    Dixit and Liu (2017): Compilation of recent developments in FE models for head injury simulations.32

  16. 16.

    Haojie Mao (2018): Introduction to anatomy of the human head in the context of head impact simulations.94

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhukar, A., Ostoja-Starzewski, M. Finite Element Methods in Human Head Impact Simulations: A Review. Ann Biomed Eng 47, 1832–1854 (2019). https://doi.org/10.1007/s10439-019-02205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02205-4

Navigation