Skip to main content
Log in

Geometrical derivation of frictional forces for granular media under slow shearing

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We present an alternative way to determine the frictional forces at the contact between two particles. This alternative approach has its motivation in a detailed analysis of the bounds on the time integration step in the discrete element method for simulating collisions and shearing of granular assemblies. We show that, in standard numerical schemes, the upper limit for the time integration step, usually taken from the average time t c of one contact, is in fact not sufficiently small to guarantee numerical convergence of the system during relaxation. In particular, we study in detail how the kinetic energy decays during the relaxation stage and compute the correct upper limits for the time integration step, which are significantly smaller than the ones commonly used. In addition, we introduce an alternative approach based on simple relations to compute the frictional forces that converges even for time integration steps above the upper limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pöschel T., Schwager T.: Computational Granular Dynamics. Springer, Berlin (2005)

    Google Scholar 

  2. Ciamarra M.P., Coniglio A., Nicodemi M.: Shear instabilities in granular mixtures. Phys. Rev. Lett. 94, 188001 (2005)

    Article  Google Scholar 

  3. da Cruz F., Eman S., Prochnow M., Roux J.N.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E. 72, 021309 (2005)

    Article  Google Scholar 

  4. Cundall P.A.: Numerical experiments on localization in frictional materials. Ingenieur-Archiv 59, 148 (1989)

    Article  Google Scholar 

  5. Thompson P.A., Grest G.S.: Lasting contacts in molecular dynamics simulations. Phys. Rev. Lett. 67, 1751 (1991)

    Article  Google Scholar 

  6. Peña A.A., García-Rojo R., Herrmann H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 9, 279–291 (2007)

    Article  MATH  Google Scholar 

  7. Alonso-Marroquín F., Vardoulakis I., Herrmann H.J., Weatherley D., Mora P.: Effect of rolling on dissipation in fault gouges. Phys. Rev. E 74, 031306 (2006)

    Article  Google Scholar 

  8. Mora P., Place D.: The weakness of earthquake faults. Geophys. Res. Lett. 26, 123 (1999)

    Article  Google Scholar 

  9. Allen M.P., Tildesley D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (2003)

    Google Scholar 

  10. McNamara S., Garía-Rojo R., Herrmann H.J.: Microscopic origin of granular ratcheting. Phys. Rev. E. 77, 031304 (2008)

    Article  Google Scholar 

  11. Luding S., Clément E., Blumen A., Rajchenbach J., Duran J.: Anomalous energy dissipation in molecular-dynamics simulations of grains: the detachment effect. Phys. Rev. E 50, 4113 (1994)

    Article  Google Scholar 

  12. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  13. Tillemans H.J., Herrmann H.J.: Simulating deformations of granular solids under shear. Physica A 217, 261–288 (1995)

    Article  Google Scholar 

  14. Foerster S.F., Louge M.Y., Chang H., Allia K.: Measurements of the collision properties of small spheres. Phys. Fluids 6(3), 1108 (1994)

    Article  Google Scholar 

  15. Luding S.: Collisions and contacts between two particles. In: Herrmann, H.J., Hovi, J.-P., Luding, S. (eds) Physics of Dry Granular Media, p. 285. Kluwer, Dordrecht (1998)

    Google Scholar 

  16. Matuttis H.-G.: Simulation of the pressure distribution under a two-dimensional heap of polygonal particles. Granul. Matter 1, 83 (1998)

    Article  Google Scholar 

  17. Alonso-Marroquín F., Herrmann H.J.: Ratcheting of granular materials. Phys. Rev. Lett. 92, 054301 (2004)

    Article  Google Scholar 

  18. Latham S., Abe S., Mora P.: Parallel 3D simulation of a fault gouge. In: García-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains 2005, p. 213. Balkema, Stuttgart (2005)

    Google Scholar 

  19. Rougier E., Munjiza A., John N.W.M.: Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics. Int. J. Numer. Meth. Eng. 61, 856 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, A.A., Lind, P.G., McNamara, S. et al. Geometrical derivation of frictional forces for granular media under slow shearing. Acta Mech 205, 171–183 (2009). https://doi.org/10.1007/s00707-009-0172-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0172-5

Keywords

Navigation