Skip to main content
Log in

Shock-capturing method using characteristic-based dissipation filters in pressure-based algorithm

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, an efficient blending procedure based on the pressure-based algorithm is presented to solve the compressible Euler equations on a non-orthogonal mesh with collocated finite volume formulation. The boundedness criteria for this procedure are determined from total variation diminishing (TVD) schemes with and without applying of artificial compression method (ACM) of Harten as a control switch of dissipation. The fluxes of the convected quantities including mass flow rate are approximated by using the characteristic-based TVD and TVD/ACM methods. The algorithm is tested for steady-state inviscid flows at different Mach numbers ranging from the transonic to the supersonic regime and the results are compared with the existing numerical solutions. The comparisons show that the ACM is a useful technique to modify standard high-resolution schemes, which prevents the smearing of discontinuities and improves the resolution of shocks in the pressure-based algorithm. Aside from having the ability of accurately capturing shocked flows, this approach also accelerates the convergence rate of the solution in the supersonic flows with only a maximum increase of 5% in the operations with respect to standard second-order TVD schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harten A.: High resolution scheme for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite-volume methods using Runge–Kutta time-stepping schemes. AIAA, Paper 81-1259, June (1981)

  3. Turkel E.: Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys. 72, 277–298 (1987)

    Article  MATH  Google Scholar 

  4. Turkel E., Radespiel R., Kroll N.: Assessment of preconditioning methods for multidimensional aerodynamics. Comp. Fluids 26(6), 613–634 (1997)

    Article  MATH  Google Scholar 

  5. Guillard H., Viozat C.: On the behaviour of upwind schemes in the low Mach number limit. Comp. Fluids 28(1), 63–86 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zamzamian K., Razavi S.E.: Multidimensional upwinding for incompressible flows based on characteristics. J. Comput. Phys. 227(19), 8699–8713 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Harlow F.H., Amsden A.: A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8(2), 197–213 (1971)

    Article  MATH  Google Scholar 

  8. Karki K.C., Patankar S.V.: Pressure-based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA J. 27(9), 1167–1174 (1989)

    Article  Google Scholar 

  9. Lien F.S., Leschziner M.A.: A pressure–velocity solution strategy for compressible flow and its application to shock boundary-layer interaction using second-moment turbulence closure. J. Fluids Eng. 115(4), 717–725 (1993)

    Article  Google Scholar 

  10. Van Leer B.: Towards the ultimate conservation difference scheme. II. Monotonicity and conservation combined in second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)

    Article  Google Scholar 

  11. Shyy W., Thakur S.: Controlled variation scheme in a sequential solver for recirculating flows. Heat Transf. 25(3, Pt.B), 273–286 (1994)

    Google Scholar 

  12. Thakur S., Wright J., Shyy W., Liu J., Ouyang H., Vu T.: Development of pressure-based composite multigrid methods for complex fluid flows. Prog. Aerospace Sci. 32(4), 313–375 (1996)

    Article  Google Scholar 

  13. Mulder W.A., Van Leer B.: Experiments with implicit upwind methods for the Euler equations. J. Comput. Phys. 59, 232–246 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lin H., Chieng C.C.: Characteristic-based flux limiters of an essentially third-order flux-splitting method for hyperbolic conservation laws. Int. J. Numer. Methods Fluids 13(3), 287–307 (1991)

    Article  MATH  Google Scholar 

  15. Issa, R.I., Javareshkian, M.H.: Application of TVD schemes in pressure-based finite-volume methods. In: Proceedings of the Fluids Engineering Division Summer Meeting, vol. 3, pp 159–164. American Society of Mechanical Engineers, New York (1996)

  16. Issa R.I., Javareshkian M.H.: Pressure-based compressible calculation method utilizing total variation diminishing schemes. AIAA J. 36(9), 1652–1657 (1998)

    Article  Google Scholar 

  17. Kobayashi M.H., Pereira J.C.F.: Characteristic-based pressure correction at all speeds. AIAA J. 34(2), 272–280 (1996)

    Article  MATH  Google Scholar 

  18. Harten A.: The artificial compression method for computation of shocks and contact discontinuities. I. Single conservation laws. Comm. Pure & Appl. Math. 30, 611–637 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Harten A.: The artificial compression method for computation of shocks and contact discontinuities: III. Self-adjusting hybrid schemes. Math. Comput. 32(142), 363–389 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yee H., Warming R.F., Harten A.: Implicit total variation diminishing (TVD) schemes for steady state calculations. J. Comput. Phys. 57(2), 327–360 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yee H.C., Sandham N.D., Djomeri M.J.: Low dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199–238 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lie K.A., Noelle S.: On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. comput. 24(4), 1157–1174 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Roe P.L.: Approximate riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hirsch C.H.: Numerical Computation of Internal and External Flows, vol. 2. Wiley, New York (1990)

    Google Scholar 

  25. Yee, H.C.: Numerical experiments with a symmetric high-resolution shock-capturing scheme. NASA TM-88325 (June 1986)

  26. Harten A., Hyman J.M.: A self-adjusting grid for the computation of weak solutions of hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kozel, K.: Numerical solution of some problems of external and internal aerodynamics with applications. QNET Workshop, May 29–30, Prague (2003)

  28. Arnone, A., Swanson, R.C.: A navier–stokes solver for cascade flows. NASA CR 181682, ICASE Report No. 88-32 (July 1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Abdollahi Jahdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djavareshkian, M.H., Abdollahi Jahdi, M.H. Shock-capturing method using characteristic-based dissipation filters in pressure-based algorithm. Acta Mech 209, 99–113 (2010). https://doi.org/10.1007/s00707-009-0144-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0144-9

Keywords

Navigation