Skip to main content
Log in

Compensation of torsional vibrations in rods by piezoelectric actuation

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the piezoelectric compensation of torsional vibrations in rods caused by external excitations is studied. As an illustrative example, a laminated rod containing piezoelectric shear actuators is assumed to be fixed at the one end, and the other end is subjected to a torsional couple; additionally, a distributed torsional couple per unit length is acting. In such a system, cross-sectional warping is known to be present. The consideration of piezoelectric eigenstrains requires an extension of Saint Venant’s theory of torsion, which is achieved by introducing an additional warping function. Using D’Alembert’s principle, the boundary value problems for Saint Venant’s warping function, the additional warping function and the torsional angle are obtained. From the latter boundary value problems, the distribution of piezoelectric actuation is derived in order to completely compensate the external excitations, i.e. an analytical solution of the corresponding shape control problem is obtained. Finally, the results are verified by means of three-dimensional finite element computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walker D.N.: Torsional Vibrations of Turbo-Machinery. McGraw-Hill, New York (2004)

    Google Scholar 

  2. Ye S., Williams K.A.: Torsional friction damper optimization. J. Sound Vib. 294, 529–546 (2006)

    Article  Google Scholar 

  3. Nayfeh S.A., Varanasi K.K.: A model for the damping of torsional vibration in thin-walled tubes with constrained viscoelastic layers. J. Sound Vib. 278, 825–846 (2004)

    Article  Google Scholar 

  4. Kappler M., Böhme G., Müller A.: Numerical study on the nonlinear oscillations of a torsion absorber filled with a viscoelastic fluid. Acta Mech. 173, 195–206 (2004)

    Article  MATH  Google Scholar 

  5. Chopra I.: Review of state of art of smart structures and integrated systems. AIAA J. 11, 2145–2187 (2002)

    Article  Google Scholar 

  6. Crawley E.: Intelligent structures for aerospace: a technology overview and assessment. AIAA J. 8, 1689–1699 (1994)

    Article  Google Scholar 

  7. Sunar M., Rao S.S.: Recent advances in sensing and control of flexible structures via piezoelectric materials technology. Appl. Mech. Rev. 1, 1–16 (1999)

    Article  Google Scholar 

  8. Mason W.P.: Piezoelectricity, its history and applications. J. Acoust. Soc. Am. 70(6), 1561–1566 (1981)

    Article  Google Scholar 

  9. Yang J.: An Introduction to the Theory of Piezoelectricity. Springer, New York (2005)

    MATH  Google Scholar 

  10. Mura T.: Micromechanics of Defects in Solids, 2nd edn. Kluwer, Dordrecht (1991)

    Google Scholar 

  11. Irschik H., Pichler U.: An extension of Neumann’s method for shape control of force-induced elastic vibrations by eigenstrains. Int. J. Solids Struct. 41, 871–884 (2004)

    Article  MATH  Google Scholar 

  12. Adam C.: Eigenstrain induced vibrations of composite plates. Acta Mech. 148, 35–53 (2001)

    Article  MATH  Google Scholar 

  13. Takawa T., Fukada T., Takada T.: Flexural-torsion coupling vibration control of fiber composite cantilevered beam by using piezoceramic actuators. Smart Mater. Struct. 6, 477–484 (1997)

    Article  Google Scholar 

  14. Park C., Chopra I.: Modelling piezoceramic actuation of beams in torsion. AIAA J. 34, 2582–2589 (1996)

    Article  MATH  Google Scholar 

  15. Park C., Walz C., Chopra I.: Bending and torsion models of beams with induced-strain actuators. Smart Mater. Struct. 5, 98–113 (1996)

    Article  Google Scholar 

  16. Spearritt D.J., Asokanthan S.F.: Torsional vibration control of a flexible beam using laminated PVDF actuators. J. Sound Vib. 193, 941–956 (1996)

    Article  Google Scholar 

  17. Shen I.Y., Guo W., Pao Y.C.: Torsional vibration control of a shaft through active constrained layer damping treatments. J. Vib. Acoust. 119, 504–511 (1997)

    Article  Google Scholar 

  18. Chandra R., Chopra I.: Structural modelling of composite beams with induced-strain actuators. AIAA J. 31, 1692–1701 (1993)

    Article  MATH  Google Scholar 

  19. Zhu M., Lee S.R., Li H., Zhang T., Tong P.: Modelling of torsional vibration induced by extension-twisting coupling of anisotropic composite laminates with piezoelectric actuators. Smart Mater. Struct. 11, 55–62 (2002)

    Article  Google Scholar 

  20. Sung C., Varadan V.V., Bao X., Varadan V.K.: Active torsional vibration control experiments using shear-type piezoceramic sensors and actuators. J. Intel. Mat. Syst. Str. 3, 436–442 (1994)

    Article  Google Scholar 

  21. Centolanza L.R., Smith E.C., Munsky B.: Induced-shear piezoelectric actuators for rotor blade trailing edge flaps. Smart Mater. Struct. 11, 24–35 (2002)

    Article  Google Scholar 

  22. Zehetner, Ch.: Compensation of torsion in rods by piezoelectric actuation. Arch. Appl. Mech. doi:10.1007/s00419-008-0204-y (2008)

  23. Savoia M., Tullini N.: Torsional response of inhomogenous and multilayered composite beams. Compos. Struct. 25, 587–594 (1993)

    Article  Google Scholar 

  24. Swanson S.R.: Torsion of laminated rectangular rods. Compos. Struct. 42, 23–31 (1998)

    Article  Google Scholar 

  25. Tanghe-Carrier F.: A remarkable property of the Saint-Venant warping function for orthotropic composite beams. Mech. Res. Commun. 27, 143–148 (2000)

    Article  MATH  Google Scholar 

  26. Rand O., Rovenski V.: Analytical methods in anisotropic elasticity. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  27. Haftka R.T., Adelman H.M.: An analytical investigation of shape control of large space structures by applied temperatures. AIAA J. 23, 450–457 (1985)

    Article  Google Scholar 

  28. Irschik H.: A review on static and dynamic shape control of structures by piezoelectric actuation. Eng. Struct. 24, 5–11 (2002)

    Article  Google Scholar 

  29. Irschik H., Krommer M., Pichler U.: Dynamic shape control of beam-type structures by piezoelectric actuation and sensing. Int. J. Appl. Electrom. 17, 251–258 (2003)

    Google Scholar 

  30. Zehetner Ch., Irschik H.: Displacement compensation of beam vibrations caused by rigidbody motions. Smart Mater. Struct. 14, 862–868 (2005)

    Article  Google Scholar 

  31. Zehetner, Ch.: Piezoelectric compensation of flexural and torsional vibrations in beams performing rigid-body motions. Doctoral Thesis, Johannes Kepler University of Linz (2005)

  32. Ziegler F.: Mechanics of solids and fluids. Spinger, New York (1998)

    MATH  Google Scholar 

  33. Washizu K.: Variational methods in elasticity and plasticity. Pergamon Press, Oxford (1974)

    Google Scholar 

  34. Di Paola M., Pirrotta A., Santoro R.: Line element-less method (LEM) for beam torsion solution (truly no-mesh method). Acta Mech. 195, 349–364 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Zehetner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zehetner, C. Compensation of torsional vibrations in rods by piezoelectric actuation. Acta Mech 207, 121–133 (2009). https://doi.org/10.1007/s00707-008-0112-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0112-9

Keywords

Navigation