Skip to main content
Log in

Strain-gradient extension of hypoplasticity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The paper presents an extension of the hypoplasticity theory by introducing the second-order gradient of the strain rate into the constitutive equation. The strain-gradient extension is aimed at the adequate modelling of the shear band formation in the post-localization regime. It is proved analytically that the proposed extended model produces finite-thickness shear-band solutions if and only if the stress state is a post-bifurcation state for the original non-gradient model. The problem of pure shear with an initially inhomogeneous distribution of the void ratio is solved numerically as an example to substantiate the theory. The numerical calculations show that the thickness of the shear band is invariant to the width of the initial inhomogeneity which induces the shear band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tordesillas A., Peters J.F., Gardiner B.S.: Shear band evolution and accumulated microstructural development in Cosserat media. Int. J. Num. Anal. Meth. Geomech. 28, 981–1010 (2004)

    Article  MATH  Google Scholar 

  2. Zhao J.D., Sheng D.C., Zhou W.Y.: Shear banding analysis of geomaterials by strain gradient enhanced damage model. Int. J. Solids Struct. 42, 5335–5355 (2005)

    Article  MATH  Google Scholar 

  3. Suiker A.S.J., de Borst R.: Enhanced continua and discrete lattices for modelling granular assemblies. Philos. Transact. Math. Phys. Eng. Sci. A 363, 2543–2580 (2005)

    Article  MATH  Google Scholar 

  4. Hattamleh O.A., Muhunthan B., Zbib H.M.: Multi-slip gradient formulation for modeling microstructure effects on shear bands in granular materials. Int. J. Solids Struct. 44, 3393–3410 (2007)

    Article  MATH  Google Scholar 

  5. Tejchman J., Wu W.: Modeling of textural anisotropy in granular materials with stochastic micro-polar hypoplasticity. Int. J. Non-Linear Mech. 42, 882–894 (2007)

    Article  Google Scholar 

  6. Voyiadjis G.Z., Alsaleh M.I., Alshibli K.A.: Evolving internal length scales in plastic strain localization for granular materials. Int. J. Plast. 21, 2000–2024 (2007)

    Article  Google Scholar 

  7. Aifantis E.C.: On the microstructural origin of certain inelastic models. ASME J. Eng. Mat. Tech. 106, 326–330 (1984)

    Google Scholar 

  8. Vardoulakis I., Aifantis E.C.: A gradient flow theory of plasticity for granular materials. Acta Mech. 87, 197–217 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Oka F., Yashima A., Adachi T., Aifantis E.C.: Instability of gradient dependent viscoplastic model for clay saturated with water and FEM analysis. Appl. Mech. Rev. 45, 140–148 (1992)

    Google Scholar 

  10. Chambon R., Moullet J.C.: Uniqueness studies in boundary value problems involving some second gradient models. Comput. Meth. Appl. Mech. Eng. 193, 2771–2796 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mühlhaus H.B., Vardoulakis I.: The thickness of shear bands in granular materials. Géotechnique 37, 271–283 (1987)

    Article  Google Scholar 

  12. de Borst R., Sluys L.J.: Localisation in a Cosserat continuum under static and dynamic loading conditions. Comp. Meth. Appl. Mech. Eng. 90, 805–827 (1991)

    Article  Google Scholar 

  13. Tejchman J., Wu W.: Numerical study on patterning of shear bands in a Cosserat continuum. Acta Mech. 99, 61–74 (1993)

    Article  MATH  Google Scholar 

  14. Bazant Z.P., Belytschko T., Chang T.P.: Continuum model for strain softening. J. Eng. Mech. 110, 1666–1692 (1984)

    Article  Google Scholar 

  15. di Prisco C., Imposimato S., Aifantis E.C.: A visco-plastic constitutive model for granular soils modified according to non-local and gradient approaches. Int. J. Numer. Anal. Meth. Geomech. 26, 121–138 (2002)

    Article  MATH  Google Scholar 

  16. Maier T.: Comparison of non-local and polar modelling of softening in hypoplasticity. Int. J. Numer. Anal. Meth. Geomech. 28, 251–268 (2004)

    Article  MATH  Google Scholar 

  17. Wu W., Kolymbas D.: Hypoplasticity then and now. In: Kolymbas, D.(eds) Constitutive Modelling of Granular Materials, pp. 57–105. Springer, Berlin (2000)

    Google Scholar 

  18. Tamagnini C., Viggiani G., Chambon R.: A review of two different approaches to hypoplasticity. In: Kolymbas, D.(eds) Constitutive Modelling of Granular Materials, pp. 107–145. Springer, Berlin (2000)

    Google Scholar 

  19. Masin D.: A hypoplastic constitutive model for clays. Int. J. Numer. Anal. Meth. Geomech. 29, 311–336 (2005)

    Article  MATH  Google Scholar 

  20. Huang W.X., Wu W., Sun D.A., Sloan S.: A simple hypoplastic model for normally consolidated clay. Acta Geotechnica 1, 15–27 (2006)

    Article  Google Scholar 

  21. Weifner T., Kolymbas D.: A hypoplastic model for clay and sand. Acta Geotechnica 2, 103–112 (2007)

    Article  Google Scholar 

  22. Tejchman J., Bauer E.: Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Comput. Geotechnics 19, 221–244 (1996)

    Article  Google Scholar 

  23. Huang W., Nübel K., Bauer E.: Polar extension of a hypoplastic model for granular materials with shear localization. Mech. Mater. 34, 563–576 (2002)

    Article  Google Scholar 

  24. Schreyer H.L., Chen Z.: One-dimensional softening with localization. ASME J. Appl. Mech. 53, 791–797 (1986)

    Article  Google Scholar 

  25. Vardoulakis I., Aifantis E.C.: Gradient dependent dilatancy and its implications in shear banding and liquefaction. Ingenieur-Archiv 59, 197–208 (1989)

    Article  Google Scholar 

  26. Mühlhaus H.B., Aifantis E.C.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845–857 (1991)

    Article  MATH  Google Scholar 

  27. Wu W.: On high-order hypoplastic models for granular materials. J. Eng. Math. 56, 23–34 (2006)

    Article  MATH  Google Scholar 

  28. Wu W., Kolymbas D.: Numerical testing of the stability criterion for hypoplastic constitutive equations. Mech. Mater. 9, 245–253 (1990)

    Article  Google Scholar 

  29. Kolymbas D.: An outline of hypoplasticity. Arch. Appl. Mech. 61, 143–151 (1991)

    MATH  Google Scholar 

  30. Wu W., Bauer E.: A simple hypoplastic constitutive model for sand. Int. J. Numer. Anal. Meth. Geomech. 18, 833–862 (1994)

    Article  MATH  Google Scholar 

  31. Chambon R., Desrues J., Hammad W., Charlier R.: CLoE, a new rate-type constitutive model for geomaterials. Theoretical basis and implementation. Int. J. Num. Anal. Meth. Geomech. 18, 253–278 (1994)

    Article  MATH  Google Scholar 

  32. Gudehus G.: A comprehensive constitutive equation for granular materials. Soils Found. 36, 1–12 (1996)

    Google Scholar 

  33. Bauer E.: Calibration of a comprehensive hypoplastic model for granular materials. Soils Found. 36, 13–26 (1996)

    Google Scholar 

  34. von Wolffersdorff P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frictional Mater. 1, 251–271 (1996)

    Article  Google Scholar 

  35. Vardoulakis I., Sulem J.: Bifurcation Analysis in Geomechanics. Chapman & Hall, London (1995)

    Google Scholar 

  36. Wu W.: Non-linear analysis of shear band formation in sand. Int. J. Numer. Anal. Meth. Geomech. 24, 245–263 (2000)

    Article  MATH  Google Scholar 

  37. Chambon R., Crochepeyre S., Desrues J.: Localization criteria for non-linear constitutive equations of geomaterials. Mech. Cohesive-Frictional Mater. 5, 61–82 (2000)

    Article  Google Scholar 

  38. Weingartner B., Osinov V.A., Wu W.: Acceleration waves in hypoplasticity—2D analysis. In: Wu, W., Yu, H.S.(eds) Modern Trends in Geomechanics, pp. 485–500. Springer, Berlin (2006)

    Chapter  Google Scholar 

  39. Weingartner B., Osinov V.A., Wu W.: Acceleration wave speeds in a hypoplastic constitutive model. Int. J. Non-Linear Mech. 41, 991–999 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Osinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osinov, V.A., Wu, W. Strain-gradient extension of hypoplasticity. Acta Mech 203, 37–47 (2009). https://doi.org/10.1007/s00707-008-0042-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0042-6

Keywords

Navigation