Skip to main content
Log in

Load-transfer from fibre to anisotropic half-space for dilute composites

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

An asymptotic approach is proposed to describe the load-transfer from a single fibre to an anisotropic half-space through weak and stiff interfaces. To start with we simplified the input boundary value problem using ratios of the elastic constants as small parameters. The simplified boundary value problem is solved using integral transforms. Inverse transforms are approximately expressed through elementary and special functions. The obtained results can be used for the investigation of the fracture of composites. In Civil Engineering, the proposed solution can describe the behaviour of piles or piers embedded in soil media that exhibit a linear elastic response in the working-load range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sternberg, E.: Load-transfer and load-diffusion in elastostatics. In: Proc. 6th US National Congress on Applied Mechanics, pp. 34–61 (1970)

  2. Grigolyuk E.I. and Tolkachev V.M. (1987). Contact Problems in the Theory of Plates and Shells. Mir, Moscow

    Google Scholar 

  3. Phan-Thien N. and Kim S. (1994). Microstructures in Elastic Media. Principles and Computational Methods. Oxford University Press, New York

    MATH  Google Scholar 

  4. Lenci S. (2000). Melan’s problems with weak interface. J. Appl. Mech. 67: 22–28

    Article  MATH  Google Scholar 

  5. Lenci S. and Menditto G. (2000). Weak interface in long fiber composites. Int. J. Solids Struct. 37: 4239–4260

    Article  MATH  Google Scholar 

  6. Movchan A.B., Movchan N.V. and Poulton C.G. (2002). Asymptotic Models of Fields in Dilute and Densely Packed Composites. Imperial College Press, London

    MATH  Google Scholar 

  7. Lekhnitskii S.G. (1968). Anisotropic Plates. Gordon and Breach, New York

    Google Scholar 

  8. Sachenkov, A.V., Daragan, V.I.: Method of Small Parameter in Plane Problem of the Theory of Elasticity of Anisotropic Bodies. Investigation in the Theory of Plates and Shells YIII, pp. 77–95. Kazan State University, Kazan (1975)

  9. Lekhnitskii S.G. (1963). Theory of Elasticity of Anisotropic Elastic Bodies. Golden-Day, San Francisco

    Google Scholar 

  10. Kosmodamianskii A.S. (1966). Stress state of a plate with strongly anisotropy weakened by two elliptical openings. Sov. Appl. Mech. 11: 59–65

    Google Scholar 

  11. Kosmodamianskii A.S. (1976). The Stressed State of Anisotropic Medias with Holes or Cavities. Visha Schkola, Kiev-Donetzk

    Google Scholar 

  12. Manevitch, L.I., Pavlenko, A.V., Shamrovskii, A.D.: Application of the group theory methods to the dynamical problems for orthotropic plates. In: Proc. 7th All-Union Conference on Plates and Shells (Dnepropetrovsk, 1969), pp. 408–412. Nauka, Moscow (1970)

  13. Manevitch L.I., Pavlenko A.V. and Shamrovskii A.D. (1971). The approximate solution of the theory of elasticity contact problem for an orthotropic strip reinforced by ribs. Hydroaeromech. Theory Elast. 13: 102–112

    Google Scholar 

  14. Everstine G.C. and Pipkin A.C. (1971). Stress channeling in transversely isotropic elastic composites. Z. Angew. Math. Phys. 22: 825–834

    Article  MATH  Google Scholar 

  15. Everstine G.C. and Pipkin A.C. (1973). Boundary layers in fiber-reinforced materials. J. Appl. Mech. 40: 518–522

    MATH  Google Scholar 

  16. Spencer A.J.M. (1974). Boundary layers in highly anisotropic plane elasticity. Int. J. Solids Struct. 10: 1103–1123

    Article  MATH  Google Scholar 

  17. Pipkin A.C. (1979). Stress analysis for fibre-reinforced materials. Adv. Appl. Mech. 19: 1–51

    Article  MATH  Google Scholar 

  18. Sanchez V. and Pipkin A.C. (1978). Crack-tip analysis for elastic materials reinforced with strong fibers. Q. J. Mech. Appl. Math. 31: 349–362

    Article  MATH  Google Scholar 

  19. Pipkin A.C. (1984). Stress channeling and boundary layers in strongly anisotropic solids. In: Spencer, A.J.M. (eds) Continuum Theory of the Mechanics of Fibre-Reinforced Composites, pp 123–145. Springer, Wien

    Google Scholar 

  20. Christensen R.M. (2005). Mechanics of Composite Materials. Dover Publications, Mineola, NY

    Google Scholar 

  21. Bogan Yu.A. (1981). Second boundary value problem of the theory of elasticity for a significantly anisotropic plate with an elliptic hole. Sov. Appl. Mech. 17: 821–825

    Article  MATH  Google Scholar 

  22. Bogan Yu.A. (1994). Distribution of stresses in elastic strongly anisotropic materials. J. Appl. Mech. Tech. Phys. 35: 476–480

    Article  MathSciNet  Google Scholar 

  23. Manevitch L.I., Pavlenko A.V. and Koblik S.G. (1979). Asymptotic Methods in the Theory of Elasticity of Orthotropic Body. Visha Schkola, Kiev-Donetzk

    Google Scholar 

  24. Andrianov I.V., Awrejcewicz J. and Manevitch L.I. (2004). Asymptotical Mechanics of Thin-walled Structures. A Handbook. Springer, Berlin

    Google Scholar 

  25. Manevitch L.I. (2001). On one asymptotic method in contact problems for anisotropic solids. In: Vorovich, I.I. and Alexandrov, V.M. (eds) Mechanics of Contact Interactions, pp 55–72. Fizmatlit, Moscow

    Google Scholar 

  26. Manevitch L.I. and Pavlenko A.V. (1975). Transmission of a dynamic load by a longitudinal stiffener on an elastic orthotropic plate. Mech. Solids 10: 100–106

    Google Scholar 

  27. Manevitch L.I. and Pavlenko A.V. (1982). Taking into account the structural inhomogeneity of a composite material in estimating adhesive strength. J. Appl. Mech. Tech. Phys. 23: 434–439

    Article  Google Scholar 

  28. Pavlenko A.V. (1981). Transfer of a load from a rod to an elastic anisotropic half-plane. Mech. Solids 16: 88–95

    Google Scholar 

  29. Pavlenko A.V. (1980). Application of asymptotic method to three-dimensional problem of elasticity for composite materials. Mech. Solids 15: 47–57

    Google Scholar 

  30. Manevitch L.I. and Pavlenko A.V. (1991). Asymptotic Methods in Micromechanics of Composite Materials. Naukova Dumka, Kiev

    Google Scholar 

  31. Kagadii T.S. and Pavlenko A.V. (1989). The axisymmetric problem of transferring a load to a viscoelastic orthotropic body by means of an elastic rod. J. Appl. Math. Mech. 53: 619–622

    Article  Google Scholar 

  32. Kagadii T.S., Mossakovskaya L.V. and Pavlenko A.V. (1992). The perturbation method in a spatial problem of the linear viscoelasticity of anisotropic bodies. J. Appl. Math. Mech. 56: 147–151

    Article  MathSciNet  Google Scholar 

  33. Elliott H.A. (1948). Three-dimensional stress distributions in hexagonal aelotropic crystals. Proc. Camb. Phil. Soc. 44: 522–533

    Google Scholar 

  34. Mbanefo U. and Westmann R.A. (1990). Axisymmetric stress analysis of a broken, debonded fiber. J. Appl. Mech. 57: 654–660

    Article  MATH  Google Scholar 

  35. Geymonat G., Krasucki F. and Lenci S. (1999). Mathematical analysis of a bonded joint with a soft thin adhesive. Math. Mech. Solids 4: 201–225

    Article  MathSciNet  Google Scholar 

  36. Tranter C.J. (1971). Integral Transforms in Mathematical Physics, 3rd edn. Chapman and Hall, London

    Google Scholar 

  37. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1965)

  38. Sveshnikov A.G. and Tikhonov A.N. (1978). The Theory of Functions of a Complex Variable. Mir, Moscow

    Google Scholar 

  39. Bateman, H., Erdélyi, A. (eds.): Tables of Integral Transformations, vol. 1. McGraw-Hill, New York (1954)

  40. Benveniste Y. and Miloh T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33: 309–324

    Article  Google Scholar 

  41. Hashin Z. (2002). Thin interphase imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids 50: 2509–2537

    Article  MATH  MathSciNet  Google Scholar 

  42. Benveniste Y. and Chen T. (2001). On the Saint-Venant torsion of composite bars with imperfect interfaces. Proc. R. Soc. Lond. A 457: 231–255

    MATH  MathSciNet  Google Scholar 

  43. Desrumaux F., Meraghni F. and Benzeggagh M.L. (2001). Generalised Mori–Tanaka scheme to model anisotropic damage using numerical Eshelby tensor. J. Compos. Mater. 35: 603–624

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Andrianov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrianov, I.V., Danishevs’kyy, V.V. & Weichert, D. Load-transfer from fibre to anisotropic half-space for dilute composites. Acta Mech 200, 69–78 (2008). https://doi.org/10.1007/s00707-007-0540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0540-y

Keywords

Navigation