Skip to main content
Log in

Three Dimensional Fibre-Reinforce Anisotropic Half Space with Lagging Behavior in the Presence of Heat Source and Gravity

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A three dimensional fibre-reinforce thermoelastic model is proposed here for an anisotropic medium with lagging behaviour in the presence of heat source and gravity. In the context of memory dependent derivative, the basic governing equations and heat conduction equation are adopted here. The analytical solutions are obtained by forming the vector–matrix differential equation in the transform domain. The graphical representation and numerical analysis of diffrerent physical variables with respect to different space variables have been done to verify the initial and boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

\(Q=Q(x,y,t)\) :

Heat source

\(\rho \) :

Mass density

\(T_{0}\) :

Reference uniform temperature of the body

T:

Temperature change of a material particle

\(e_{ij}\) :

Strain components

\(\tau _{ij} \) :

Stress components

\(u_{i}\) :

Displacement components

e:

Dilatation

P:

Initial stress

\(C_{E} \) :

Specific heat constant

\(\varepsilon ={\textstyle \frac{\gamma ^{2} T_{0} }{\rho C_{E} (\lambda +2\mu )}} \) :

Thermal coupling parameter

\(\lambda ,\mu _{T}\) :

Elastic parameters

\(\lambda ,\mu \) :

Lame’s constant

\(\alpha ,\beta ,(\mu _{L} -\mu _{T} )\) :

Reinforced anisotropic elastic parameter

\(\omega \) :

Rotational component

\(\tau \) :

Relaxation time

\(\tau _{q} \, ,\tau _{\theta } \) :

Dual-phase-lag

\(q_x\) :

Feat flux

\(\alpha _{T} \) :

Coefficient of linear thermal expansion

References

  1. Abbas, I.A., Youssef, H.M.: Two-temperature generalized thermoelasticity under ramp-type heating by finite element method. Meccanica 48(2), 331–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbas, I.A.: A dual phase lag model on thermoelastic interaction in an infinite fiber-reinforced anisotropic medium with a circular hole. Mech. Based Des. Struct. Mach. 43(4), 501–513 (2015)

    Article  Google Scholar 

  3. Abbas, I.A.: Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory. J. Mech. Sci. Technol. 28(10), 4193–4198 (2014)

    Article  Google Scholar 

  4. Abbas, I.A.: Three-phase lag model on thermoelastic interaction in an unbounded fiberreinforced anisotropic medium with a cylindrical cavity. J. Comput. Theor. Nanosci. 11(4), 987–992 (2014)

    Article  Google Scholar 

  5. Belman, R., Kalaba, R.E., Lockett, J.: Numerical Inversion of the Laplace Transform. American Elsevier, New York (1966)

    Google Scholar 

  6. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Int. 13(5), 529–539 (1956)

    Article  Google Scholar 

  8. Chandrasekhariah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 21(12), 705–729 (1998)

    Article  Google Scholar 

  9. Das, B., Lahiri, A.: A generalized thermoelastic problem of functionally graded spherical cavity. J. Therm. Stress 38, 1183–1198 (2015)

    Article  Google Scholar 

  10. Das, B., Chakraborty, S., Lahiri, A.: Non-linear thermoelastic analysis of an anisotropic rectangular plate. J. Mech. Adv. Mater. Struct. https://doi.org/10.1080/15376494.2019.1578010(2019)

  11. Dhaliwal, R.S., Sherief, H.H.: Generalized thermoelasticity for anisotropic media. Q. Appl. Math. 33(1), 1–8 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diethelm, K.: Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  13. Ghosh, D., Lahiri, A., Kumar, R., Roy, S.: 3D thermoelastic interactions in an anisotropic elastic slab due to prescribed surface temperature. J. Solid Mech. 10(3), 502–521 (2018)

    Google Scholar 

  14. Ghosh, D., Lahiri, A.: A Study on the generalized thermoelastic problem for an anisotropic medium. J. Heat Transf. 140(9), 094501 (2018)

    Article  Google Scholar 

  15. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  16. Green, E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 8, 12 (1991)

    MATH  Google Scholar 

  17. Hetnarski, R.B., Ignaczak, J.: Soliton-like waves in a low temperature nonlinear thermoelastic solid. Int. J. Eng. Sci. 34(15), 1767–1787 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stress. 22(4), 451–476 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Kosinski, W., Cimmelli, V.A.: Gradient generalization to inertial state variables and a theory of super fluidity. J. Theor. Appl. Mech. 35, 763–779 (1997)

    MATH  Google Scholar 

  20. Lahiri, A., Das, B.: Eigenvalue approach to generalized thermoelastic interactions in an unbounded body with circular cylindrical hole without energy dissipation. Int. J. Appl. Mech. Eng. 13(4), 939–953 (2008)

    Google Scholar 

  21. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  22. Othman, M.I.A., Abbas, I.A.: Effect of rotation on plane waves at the free surface of a fibre-reinforced thermoelastic half-space using the finite element method. Meccanica 46(2), 413–421 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Othman, M.I.A., Abbas, I.A.: Generalized thermoelasticity of thermal-shock problem in a non-homogeneous isotropic hollow cylinder with energy dissipation. Int. J. Thermophys. 33(5), 913–923 (2012)

    Article  Google Scholar 

  24. Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30(3), 231–238 (2007)

    Article  Google Scholar 

  25. Sherief, H.H., Anwar, MdN: Problem in generalized thermoelasticity. J. Therm. Stress 9(2), 165–181 (1986)

    Article  Google Scholar 

  26. Tzou, D.Y.: A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)

    Article  Google Scholar 

  27. Wang, J.L., Li, H.F.: Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput. Math. Appl. 62, 1562–1567 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zenkour, M.A., Abbas, I.A.: A generalized thermoelasticity problem of an annular cylinder with temperaturedependent density and material properties. Int. J. Mech. Sci. 84, 54–60 (2014)

    Article  Google Scholar 

Download references

Funding

This study was funded by RUSA 2.0 (Grant Number: R-11/476/19) (Jadabpur University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debkumar Ghosh.

Ethics declarations

Conflict of interest

The authors declare that there is no potential conflict of interest regarding the authorship, research and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\(A_{11}=\lambda +2\alpha +4\mu _{L}-2\mu _{T}+\beta \), \(A_{12}=\lambda +\alpha \), \(A_{13}=\mu _{T} \), \(A_{14}=\alpha +2\mu _{T} \), \(A_{22}=\lambda +2\mu _{T} \)

$$\begin{aligned} \beta _{1}= & {} \frac{A_{11}}{\lambda +2\mu }, \beta _{2}=-\frac{(\lambda +\alpha )i \psi _{2}}{\lambda +2\mu }, \beta _{3}=-\frac{(\lambda +\alpha )i \psi _{3}}{\lambda +2\mu },\\ \beta _{4}= & {} -\frac{\beta _{11}}{\gamma }(1+\frac{\epsilon _{10} G)}{\omega }, \beta _{5}=\frac{\lambda +\alpha }{\lambda +2\mu }, \beta _{6}=-\frac{A_{22}i \psi _{2}}{\lambda +2\mu },\\ \beta _{7}= & {} -\frac{\lambda i \psi _{3}}{\lambda +2\mu }, \beta _{8}=-\frac{\beta _{22}}{\gamma }(1+\frac{\epsilon _{10} G)}{\omega }, \beta _{9}=\frac{\lambda +\alpha }{\lambda +2\mu },\\ \beta _{10}= & {} -\frac{\lambda i \psi _{2}}{\lambda +2\mu }, \beta _{11}=-\frac{A_{22} i \psi _{3}}{\lambda +2\mu }, \beta _{12}=-\frac{\beta _{33}}{\gamma }(1+\frac{\epsilon _{10} G)}{\omega },\\ \beta _{13}= & {} -\frac{i \psi _{3}\mu _{T}}{\lambda +2\mu }, \beta _{14}=-\frac{i \psi _{2}\mu _{T}}{\lambda +2\mu }, \beta _{15}=-\frac{i \psi _{3}\mu _{T}}{\lambda +2\mu },\\ \beta _{16}= & {} \frac{\mu _{T}}{\lambda +2\mu }, \beta _{17}=-\frac{i \psi _{2}\mu _{T}}{\lambda +2\mu }, \beta _{18}=\frac{\mu _{T}}{\lambda +2\mu } \end{aligned}$$
$$\begin{aligned} \epsilon _{1}= & {} A_{11}+\mu _{0} {H_{0}}^{2}, \epsilon _{2}=\mu _{T}+\frac{P}{2}, \epsilon _{3}=A_{12}+\mu _{0} {H_{0}}^{2}-\frac{P}{2}+\mu _{T}, \epsilon _{4}=\frac{\rho g}{2 c_{0} \eta },\\ \epsilon _{5}= & {} -\beta _{11}\left( \frac{\lambda +2\mu }{\gamma }\right) \\ \epsilon _{6}= & {} c_{0}^2\left( \rho +\epsilon _{0}\mu _{0}^{2}H_{0}^{2}\right) , \epsilon _{7}=-\frac{2 \rho \varOmega _{2}}{c_0}, \epsilon _{8}=\frac{2 \rho \varOmega _{1}}{c_0}, \epsilon _{9}=-\rho \left( \omega _1^2+\varOmega _{2}^2\right) , \epsilon _{10}=\frac{\gamma }{c_{0}^2 \eta }\\ \epsilon _{11}= & {} A_{13}+\frac{P}{2}, \epsilon _{12}=A_{22}+\mu _{0} {H_{0}}^{2}, \epsilon _{13}=A_{13}+\frac{P}{2}, \epsilon _{14}=A_{12}+\mu _{0} {H_{0}}^{2}-\frac{P}{2}+\mu _{T},\\ \epsilon _{15}= & {} A_{14}+\mu _{0} {H_{0}}^{2}-\frac{P}{2}\\ \epsilon _{16}= & {} \frac{\rho g}{2 c_{0} \eta }, \epsilon _{17}=-\beta _{22} \left( \frac{\lambda +2\mu }{\gamma }\right) , \epsilon _{18}=\left( \rho +\epsilon _{0}\mu _{0}^{2} H_{0}^{2}\right) c_{0}, \epsilon _{19}=2 c_0 \rho , \epsilon _{20}=-\rho \varOmega _{2}^2,\\ \epsilon _{21}= & {} \rho \varOmega _{1}\varOmega _{2} \epsilon _{22}=A_{13}+\frac{P}{2}, \epsilon _{23}=A_{22}, \epsilon _{24}=A_{12}-\frac{P}{2}, \epsilon _{25}=A_{14}-\frac{P}{2},\\ \epsilon _{26}= & {} -\frac{\rho g }{2 c_0 \eta }, \epsilon _{27}=-\beta _{33}\left( \frac{\lambda +2\mu }{\gamma }\right) , \epsilon _{28}=\rho c_0^2, \epsilon _{29}=\rho \omega _1 \omega _2, \epsilon _{30}=-\rho \varOmega _1r,\\ \epsilon _{31}= & {} - 2 \rho c_0 \varOmega _1, \epsilon _{33}=\epsilon =\frac{\gamma ^{2}\theta _{0}}{\kappa \eta (\lambda +2\mu )}, \epsilon _{34}=- 1, \epsilon _{35}=\frac{\kappa \tau _{T} c_{0}^{2} \eta }{\kappa ^{*}}, \epsilon _{36}=\frac{\tau _{v}^{*}}{\kappa ^{*}}\\ \epsilon _{37}= & {} \frac{\tau _{\kappa }}{\kappa ^{*}}, \epsilon _{38}=\left( 1+\frac{\tau _{\theta } G}{ \omega c_0^{2} \eta } \right) (1+\epsilon _{35} s^{2}+\epsilon _{36} s), \epsilon _{39}=\epsilon _{37} s\left( 1+\frac{\tau _{q} G}{\omega c_{0}^{2}\eta }+\frac{\tau _{q}^{2} G s}{2\omega c_{0}^{4}\eta ^{2}}\right) \\ \epsilon _{40}= & {} \epsilon _{33} \epsilon _{37}s\left( 1+\frac{\tau _{q} G}{\omega c_{0}^{2}\eta }+\frac{\tau _{q}^{2} G s}{2\omega c_{0}^{4}\eta ^{2}}\right) , \epsilon _{41}=\epsilon _{34} \epsilon _{37}\left( 1+\frac{\tau _{q} G}{\omega c_{0}^{2}\eta }+\frac{\tau _{q}^{2} G s}{2\omega c_{0}^{4}\eta ^{2}}\right) \\ \epsilon _{51}= & {} s+\frac{\tau _{q}s G}{c_{0}^{2}\eta \omega }\!+\!\frac{\tau _{q}^{2}s^{2} G}{2c_{0}^{4}\eta ^{2}\omega }, \epsilon _{52}\!=\!-\left( s\left( 1+\frac{\tau _{T}G}{c_{0}^{2}\eta \omega }\right) \!+\!\frac{\kappa ^{*}}{\kappa c_{0}^{2}\eta }\left( 1+\frac{\tau _{v}^{*}G}{c_{0}^{2}\eta \omega }\right) \right) , \epsilon _{100}=\frac{\epsilon _{52}}{\epsilon _{51}} \end{aligned}$$
$$\begin{aligned} C_{61}= & {} s\frac{\epsilon _{19}}{\epsilon _{11}}, C_{62}=\frac{1}{\epsilon _{11}}(\epsilon _{12}\psi _{2}^2+\epsilon _{13}\psi _{3}^2+i \epsilon _{16}\psi _{3}+\epsilon _{18} s^{2}+\epsilon _{20}),\\ C_{63}= & {} \frac{1}{\epsilon _{11}}(-\epsilon _{15}\psi _{2}\psi _{3}+\epsilon _{21}+i\epsilon _{16}\psi _{2})\\ C_{64}= & {} \frac{\epsilon _{17} i \psi _{2}}{\epsilon _{11}}\left( 1+ \frac{\epsilon _{10} G}{\omega }\right) C_{65}=\frac{\epsilon _{14} i \psi _{2}}{\epsilon _{11}}),\\ C_{66}= & {} C_{67}=C_{68}=0\\ C_{71}= & {} s\frac{\epsilon _{31}}{\epsilon _{22}}, C_{72}=\frac{1}{\epsilon _{22}}(\psi _{2}\psi _{3}\epsilon _{25}+i\psi _{2}\epsilon _{26}+\epsilon _{29}),\\ C_{73}= & {} \frac{1}{\epsilon _{22}}(\psi _{2}^{2}\epsilon _{22}+i\psi _{3}^{2}\epsilon _{22}+\epsilon _{30}+s^2+\epsilon _{28})\\ C_{74}= & {} i \psi _{3} \frac{\epsilon _{27}}{\epsilon _{22}}\left( 1+\frac{\epsilon _{10}G}{\omega }\right) , C_{75}=\frac{1}{\epsilon _{22}}(i \psi _{3} \epsilon _{24}-\epsilon _{26}), C_{76}=C_{77}=C_{78}=0\\ C_{81}= & {} 0, C_{82}=-i \psi _{2} \frac{\epsilon _{40}}{\epsilon _{38}}, C_{83}=-i \psi _{3} \frac{\epsilon _{40}}{\epsilon _{38}}, C_{84}=\psi _{2}^{2}+ \psi _{3}^{2}+\frac{\epsilon _{39}}{\epsilon _{38}}, C_{85}=\frac{\epsilon _{40}}{\epsilon _{38}},\\ C_{86}= & {} C_{87}=C_{88}=0, C_{89}=\frac{\epsilon _{41}}{\epsilon _{38}} Q_{1} \end{aligned}$$
$$\begin{aligned} f_{11}= & {} C_{51}+\lambda C_{55}-\lambda ^{2},~~f_{12}=C_{52}+\lambda C_{56},~~f_{13}=C_{53}+\lambda C_{57},~~f_{14}=C_{54}+\lambda C_{58},\\ f_{21}= & {} C_{61}+\lambda C_{65},~~f_{22}=C_{62}+\lambda C_{66}-\lambda ^{2},~~f_{23}=C_{63}+\lambda C_{67},~~f_{24}=C_{64}+\lambda C_{68},\\ f_{31}= & {} C_{51}+\lambda C_{75},~~f_{32}=C_{72}+\lambda C_{76},~~f_{33}=C_{73}+\lambda C_{77}-\lambda ^{2},~~f_{34}=C_{74}+\lambda C_{78},\\ f_{41}= & {} C_{81}+\lambda C_{85},~~f_{42}=C_{82}+\lambda C_{86},~~f_{43}=C_{83}+\lambda C_{87},~~f_{44}=C_{84}+\lambda C_{88}-\lambda ^{2},\\ \end{aligned}$$
$$\begin{aligned}M_{21}=\ \left[ \begin{array}{cccc} C_{51} &{} \quad C_{52} &{} \quad C_{53} &{} \quad C_{54} \\ C_{61} &{} \quad C_{62} &{} \quad C_{63} &{} \quad C_{64} \\ C_{71} &{} \quad C_{72} &{} \quad C_{73} &{} \quad C_{74} \\ C_{81} &{} \quad C_{82} &{} \quad C_{83} &{} \quad C_{84} \end{array} \right] M_{22}=\ \left[ \begin{array}{cccc} C_{55} &{} \quad C_{56} &{} \quad C_{57} &{} \quad C_{58} \\ C_{65} &{} \quad C_{66} &{} \quad C_{67} &{} \quad C_{68} \\ C_{75} &{} \quad C_{76} &{} \quad C_{77} &{} \quad C_{78} \\ C_{85} &{} \quad C_{86} &{} \quad C_{87} &{} \quad C_{88} \end{array} \right] \end{aligned}$$

\(R_{1j}=(\beta _{1}\lambda _{1}x_{1j}+\beta _{2}x_{2j}+\beta _{3}x_{3j}+\beta _{4}x_{4j})e^{\lambda _{j}x_{1}}\), \(R_{2j}=(\beta _{5}\lambda _{1}x_{1j}+\beta _{6}x_{2j}+\beta _{7}x_{3j}+\beta _{8}x_{4j})e^{\lambda _{j}x_{1}}\), \(R_{3j}=(\beta _{9}\lambda _{1}x_{1j}+\beta _{10}x_{2j}+\beta _{11}x_{3j}+\beta _{12}x_{4j})e^{\lambda _{j}x_{1}}\), \(R_{4j}=(\beta _{13} x_{2j}+\beta _{14}x_{3j})e^{\lambda _{j}x_{1}}\),

$$\begin{aligned} \begin{array}{lll} R_{5j}=(\beta _{15} x_{1j}+\beta _{16}\lambda _{j} x_{3j})e^{\lambda _{j} x_{1}},&{}&{} R_{6j}=(\beta _{17} x_{1j}+\beta _{18}\lambda _{j} x_{2j})e^{\lambda _{j} x_{1}},\\ R_{7j}=\epsilon _{100}(\lambda {j}-i(\psi _{2}+\psi _{3}))x_{4j}e^{\lambda _{j}x_{1}},&{}&{} R_{8j}=x_{4j} e^{\lambda _{j}x_{1}}\\ \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{lll} N_{1j}=\frac{1}{\lambda _{j}}(\beta _{2}x_{1j}+\beta _{3}x_{3j}+\beta _{4}x_{4j}),&{}&{} N_{2j}=\frac{1}{\lambda _{j}}(\beta _{6}x_{2j}+\beta _{7}x_{3j}+\beta _{8}x_{4j}),\\ N_{3j}=\frac{1}{\lambda _{j}}(\beta _{10}x_{2j}+\beta _{11}x_{3j}+\beta _{12}x_{4j}),&{}&{} N_{4j}=\frac{1}{\lambda _{j}}(\beta _{13}x_{2j}+\beta _{14}x_{3j}),\\ N_{5j}=\frac{1}{\lambda _{j}}(\beta _{15}x_{1j}),&{}&{} N_{6j}=\frac{1}{\lambda _{j}}(\beta _{17}x_{1j}),\\ N_{7j}=-\frac{\epsilon _{100}i(\psi _{2}+\psi _{3})}{\lambda _{j}}x_{4j},&{}&{} N_{8j}=\frac{1}{\lambda _{j}}x_{4j}\\ \end{array} \end{aligned}$$
$$\begin{aligned} d_1= & {} \sum _{j=1}^{8}Q_j N_{1j},d_6=\sum _{j=1}^{8}Q_j N_{6j} \\ d_5= & {} \sum _{j=1}^{8}Q_j N_{5j},d_8=\sum _{j=1}^{8}Q_j N_{8j}+d_{10} \end{aligned}$$

\(L_{1j}=\beta _{1}\lambda _{1}x_{1j}+\beta _{2}x_{2j}+\beta _{3}x_{3j}+\beta _{4}x_{4j}\), \(L_{5j}=\beta _{15} x_{1j}+\beta _{16}\lambda _{j} x_{3j}\), \(L_{6j}=\beta _{17} x_{1j}+\beta _{18}\lambda _{j} x_{2j}\), \(L_{8j}=x_{4j} \)

$$\begin{aligned} D= & {} \left| \begin{array}{cccc} L_{11} &{} \quad L_{12} &{} \quad L_{13} &{} \quad L_{14} \\ L_{61} &{} \quad L_{62} &{} \quad L_{63} &{} \quad L_{64} \\ L_{51} &{} \quad L_{52} &{} \quad L_{53} &{} \quad L_{54} \\ L_{81} &{} \quad L_{82} &{} \quad L_{83} &{} \quad L_{84} \end{array} \right| D_1=\left| \begin{array}{cccc} d_{1} &{} \quad L_{12} &{} \quad L_{13} &{} \quad L_{14} \\ d_{6} &{} \quad L_{62} &{} \quad L_{63} &{} \quad L_{64} \\ d_{5} &{} \quad L_{52} &{} \quad L_{53} &{} \quad L_{54} \\ d_{8} &{} \quad L_{82} &{} \quad L_{83} &{} \quad L_{84} \end{array} \right| D_2=\left| \begin{array}{cccc} L_{11} &{} \quad d_{1} &{} \quad L_{13} &{} \quad L_{14} \\ L_{61} &{} \quad d_{6} &{} \quad L_{63} &{} \quad L_{64} \\ L_{51} &{} \quad d_{5} &{} \quad L_{53} &{} \quad L_{54} \\ L_{81} &{} \quad d_{8} &{} \quad L_{83} &{} \quad L_{84} \end{array} \right| \\ D_3= & {} \left| \begin{array}{cccc} L_{11} &{} \quad L_{12} &{} \quad d_{1} &{} \quad L_{14} \\ L_{61} &{} \quad L_{62} &{} \quad d_{6} &{} \quad L_{64} \\ L_{51} &{} \quad L_{52} &{} \quad d_{5} &{} \quad L_{54} \\ L_{81} &{} \quad L_{82} &{} \quad d_{8} &{} \quad L_{84} \end{array} \right| D_4=\left| \begin{array}{cccc} L_{11} &{} \quad L_{12} &{} \quad L_{13} &{} \quad d_{1} \\ L_{61} &{} \quad L_{62} &{} \quad L_{63} &{} \quad d_{6} \\ L_{51} &{} \quad L_{52} &{} \quad L_{53} &{} \quad d_{5} \\ L_{81} &{} \quad L_{82} &{} \quad L_{83} &{} \quad d_{8} \end{array} \right| \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Lahiri, A. Three Dimensional Fibre-Reinforce Anisotropic Half Space with Lagging Behavior in the Presence of Heat Source and Gravity. Int. J. Appl. Comput. Math 6, 40 (2020). https://doi.org/10.1007/s40819-020-0783-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-0783-z

Keywords

Navigation