Skip to main content
Log in

Recent progress in the reduction of benzene derivatives and their industrial applications

  • Review
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Cyclohexane (CHA), cyclohexene (CHE), and 1,4-cyclohexadiene (CHD) derivatives have a wide variety of applications and scope in synthetic and industrial organic chemistry. These cyclic hydrocarbons are found in a variety of natural products, including herbal plants and fruits as basic fragrance components. The extraction and isolation of these essential hydrocarbons are too complex and difficult to pursue. However, the reduction of benzene and its derivatives is an essential and effective approach for producing CHA, CHE, and CHD derivatives. To obtain CHA, CHE, and CHD derivatives, several types of reduction techniques for benzene and its derivatives have been developed over the years, including various forms of catalytic hydrogenation, Benkeser reduction, classic and many modified Birch reductions such as ammonia-free, metal-free photochemical, solvent-free, electrochemical and electride-mediated Birch reduction. In this study, the comparison of chemoselectivity, regioselectivity, reaction conditions, reduction efficiency, and environmentally acceptable approaches of these techniques used for benzene reduction are summarized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Mortier J (2016) Arene chemistry: reaction mechanisms and methods for aromatic compounds. Wiley

  2. Dhatrak NR (2019) Resonance 24:735

    Article  CAS  Google Scholar 

  3. Costanzo MJ, Patel MN, Petersen KA, Vogt PF (2009) Tetrahedron Lett 50:5463

    Article  CAS  Google Scholar 

  4. Foppa L, Dupont J (2015) Chem Soc Rev 44:1886

    Article  CAS  PubMed  Google Scholar 

  5. Cole JP, Chen DF, Kudisch M, Pearson RM, Lim CH, Miyake GM (2020) J Am Chem Soc 142:13573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lei P, Ding Y, Zhang X, Adijiang A, Li H, Ling Y, An J (2018) Org Lett 20:3439

    Article  CAS  PubMed  Google Scholar 

  7. Cherian AE, Sun FC, Sheiko SS, Coates GW (2007) J Am Chem Soc 129:11350

    Article  CAS  PubMed  Google Scholar 

  8. DiCiccio AM, Coates GW (2011) J Am Chem Soc 133:10724

    Article  CAS  PubMed  Google Scholar 

  9. Hosseini Nejad E, van Melis CGW, Vermeer TJ, Koning CE, Duchateau R (2012) Macromolecules 45:1770

    Article  ADS  Google Scholar 

  10. Ahmad J, Bazaka K, Oelgemöller M, Jacob MV (2014) Coatings 4:527

    Article  Google Scholar 

  11. Scharfenberg M, Hilf J, Frey H (2018) Adv Funct Mater 28:1704302

    Article  Google Scholar 

  12. Winkler M, Romain C, Meier MAR, Williams CK (2015) Green Chem 17:300

    Article  CAS  Google Scholar 

  13. Süss-Fink G, Faure M, Ward TR (2002) Angew Chem Int Ed 41:99

    Article  Google Scholar 

  14. Wang Y, Cui X, Deng Y, Shi F (2014) RSC Adv 4:2729

    Article  CAS  ADS  Google Scholar 

  15. Shinde SB, Deshpande RM (2017) Catalytic hydrogenation of benzoic acid. In: New advances in hydrogenation processes - fundamentals and applications. InTech

  16. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2010) Chem Commun 46:412

    Article  CAS  Google Scholar 

  17. Gelis C, Heusler A, Nairoukh Z, Glorius F (2020) Chem Eur J 26:14090

    Article  CAS  PubMed  Google Scholar 

  18. Plasseraud L, Süss-Fink G (1997) J Organomet Chem 539:163

    Article  CAS  Google Scholar 

  19. Faure M, Tesouro Vallina A, Stoeckli-Evans H, Süss-Fink G (2001) J Organomet Chem 621:103

    Article  CAS  Google Scholar 

  20. Rabideau PW, Marcinow Z (2004) Org React 42:1

    Google Scholar 

  21. Kerzig C, Guo X, Wenger OS (2019) J Am Chem Soc 141:2122

    Article  CAS  PubMed  Google Scholar 

  22. Shi R, Wang Z, Zhao Y, Waterhouse GIN, Li Z, Zhang B, Sun Z, Xia C, Wang H, Zhang T (2021) Nat Catal 4:565

    Article  CAS  Google Scholar 

  23. Shi Z, Li N, Lu H-K, Chen X, Zheng H, Yuan Y, Ye K-Y (2021) Curr Opin Electrochem 28:100713

    Article  CAS  Google Scholar 

  24. Rayhan U, Kwon H, Yamato T (2014) C R Chim 17:952

    Article  CAS  Google Scholar 

  25. Stoffels MA, Klauck FJR, Hamadi T, Glorius F, Leker J (2020) Adv Synth Catal 362:1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bai S-T, de Smet G, Liao Y, Sun R, Zhou C, Beller M, Maes BUW, Sels BF (2021) Chem Soc Rev 50:4259

    Article  CAS  PubMed  Google Scholar 

  27. Lloyd L (2011) Handbook of industrial catalysts. Springer

    Book  Google Scholar 

  28. Pellegatta J-L, Blandy C, Collière V, Choukroun R, Chaudret B, Cheng P, Philippot K (2002) J Mol Catal A Chem 178:55

    Article  CAS  Google Scholar 

  29. Liu X, Meng C, Han Y (2012) Nanoscale 4:2288

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Boudjahem A-G, Redjel A, Mokrane T (2012) J Ind Eng Chem 18:303

    Article  CAS  Google Scholar 

  31. Qi S-C, Wei X-Y, Zong Z-M, Wang Y-K (2013) RSC Adv 3:14219

    Article  CAS  ADS  Google Scholar 

  32. Lu L, Rong Z, Du W, Ma S, Hu S (2009) ChemCatChem 1:369

    Article  CAS  Google Scholar 

  33. Turabdzhanov SM, Tashkaraev RA, Kedel’Baev BS (2013) Theor Found Chem Eng 47:633

    Article  CAS  Google Scholar 

  34. Wang H, Yu Z, Chen H, Yang J, Deng J (1995) Appl Catal A Gen 129:L143

    Article  CAS  Google Scholar 

  35. Shanmugaraj K, Bustamante TM, Campos CH, Torres CC (2020) Materials 13:925

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Tang P, Wang H, Zhang W, Chen F-E (2020) Green Synth Catal 1:26

    Article  Google Scholar 

  37. Xu F, Chen J, Xie X, Cheng P, Yu Z, Su W (2020) Org Process Res Dev 24:2252

    Article  CAS  Google Scholar 

  38. Shewchuk SR, Mukherjee A, Dalai AK (2021) Chem Eng Sci 243:116735

    Article  CAS  Google Scholar 

  39. Numpilai T, Cheng CK, Limtrakul J, Witoon T (2021) Process Saf Environ Prot 151:401

    Article  CAS  Google Scholar 

  40. Peng Y, Wang Y, Ke L, Dai L, Wu Q, Cobb K, Zeng Y, Zou R, Liu Y, Ruan R (2022) Energy Convers Manag 254:115243

    Article  CAS  Google Scholar 

  41. Ronda-Lloret M, Rothenberg G, Shiju NR (2019) Chemsuschem 12:3896

    Article  CAS  PubMed  Google Scholar 

  42. Unglaube F, Schlapp J, Quade A, Schäfer J, Mejía E (2022) Catal Sci Technol 12:3123

    Article  CAS  Google Scholar 

  43. Kowalewski E, Śrębowata A (2022) Catal Sci Technol 12:5478

    Article  CAS  Google Scholar 

  44. Gawlig C, Schindler S, Becker S (2020) Eur J Inorg Chem 2020:248

    Article  CAS  Google Scholar 

  45. Haines HF (1962) Ind Eng Chem 54:23

    Article  CAS  Google Scholar 

  46. Khirsariya P, Mewada R (2014) Int J Eng Dev Res 2:3911

    Google Scholar 

  47. Kumar R, Shah S, Paramita Das P, Bhagavanbhai GGK, Al Fatesh A, Chowdhury B (2019) Catal Rev 61:516

    Article  CAS  Google Scholar 

  48. Bhattacharjee J, Harinath A, Sarkar A, Panda TK (2019) ChemCatChem 11:3366

    Article  CAS  Google Scholar 

  49. Che M (2013) Catal Today 218:162

    Article  Google Scholar 

  50. Sabatier P (1922) Catalysis in organic chemistry. D. Van Nostrand Company

  51. Tsai K-Y, Wang I, Tsai T-C (2011) Catal Today 166:73

    Article  CAS  Google Scholar 

  52. Martínez-Prieto LM, Cano I, van Leeuwen PWNM (2021) Iridium nanoparticles for hydrogenation reactions. In: Iridium catalysts for organic reactions. Springer, p 397

  53. Lyubimov SE, Sokolovskaya MV, Korlyukov AA, Parenago OP, Davankov VA (2020) J Iran Chem Soc 17:1283

    Article  CAS  Google Scholar 

  54. Alsalahi W, Tylus W, Trzeciak AM (2018) ChemCatChem 10:2051

    Article  CAS  Google Scholar 

  55. Mu X, Meng J, Li Z-C, Kou Y (2005) J Am Chem Soc 127:9694

    Article  CAS  PubMed  Google Scholar 

  56. Stalzer MM, Nicholas CP, Bhattacharyya A, Motta A, Delferro M, Marks TJ (2016) Angew Chem 128:5349

    Article  ADS  Google Scholar 

  57. Yang J, Fan Y, Li Z-L, Peng Z, Yang J-H, Liu B, Liu Z (2020) Mol Catal 492:110992

    Article  CAS  Google Scholar 

  58. Zhu L, Zheng L, Du K, Fu H, Li Y, You G, Chen BH (2013) RSC Adv 3:713

    Article  CAS  ADS  Google Scholar 

  59. del Angel G, Coq B, Figueras F (1985) J Catal 95:167

    Article  Google Scholar 

  60. Rousset JL, Stievano L, Aires FJCS, Geantet C, Renouprez AJ, Pellarin M (2001) J Catal 197:335

    Article  CAS  Google Scholar 

  61. Pan H-B, Wai CM (2011) New J Chem 35:1649

    Article  CAS  Google Scholar 

  62. Bancroft WD, George AB (2002) J Phys Chem 35:2219

    Article  Google Scholar 

  63. Lonergan WW, Vlachos DG, Chen JG (2010) J Catal 271:239

    Article  CAS  Google Scholar 

  64. Lu S, Lonergan WW, Zhu Y, Xie Y, Chen JG (2009) Appl Catal B 91:610

    Article  CAS  Google Scholar 

  65. Duan H, Wang D, Kou Y, Li Y (2013) Chem Commun 49:303

    Article  CAS  Google Scholar 

  66. AlAsseel AKA, Jackson SD, Kirkwood K (2018) Aromatic hydrogenation. In: Hydrogenation. De Gruyter, p 75

  67. Louloudi A, Michalopoulos J, Gangas N-H, Papayannakos N (2003) Appl Catal A Gen 242:41

    Article  CAS  Google Scholar 

  68. Toppinen S, Rantakylä T-K, Salmi T, Aittamaa J (1996) Ind Eng Chem Res 35:1824

    Article  CAS  Google Scholar 

  69. Du H, Ma X, Jiang M, Yan P, Zhao Y, Zhang ZC (2021) Catal Today 365:265

    Article  CAS  Google Scholar 

  70. Mohammadian Z, Parsafard N (2022) Theor Found Chem Eng 56:1179

    Article  CAS  Google Scholar 

  71. Wu J, Li T, Meng G, Xiang Y, Hai J, Wang B (2021) Catal Sci Technol 11:4216

    Article  CAS  Google Scholar 

  72. Ni J, Leng W, Mao J, Wang J, Lin J, Jiang D, Li X (2019) Appl Catal B 253:170

    Article  CAS  Google Scholar 

  73. Yan XU, Du X, Jing LI, Peng W, Jie ZHU, Ge F, Jun Z, Ming S, Zhu W (2019) J Fuel Chem Technol 47:199

    Article  Google Scholar 

  74. Shenghua HU, Mingwei XUE, Hui C, Yinlu SUN, Jianyi S (2011) Chin J Catal 32:917

    Article  Google Scholar 

  75. Michalska K, Kowalik P, Konkol M, Próchniak W, Stołecki K, Słowik G, Borowiecki T (2016) Appl Catal A Gen 523:54

    Article  CAS  Google Scholar 

  76. Boudjahem A-G, Bouderbala W, Bettahar M (2011) Fuel Process Technol 92:500

    Article  CAS  Google Scholar 

  77. Peyrovi MH, Rostamikia T, Parsafard N (2018) Energy Fuels 32:11432

    Article  CAS  Google Scholar 

  78. Mokrane T, Boudjahem A-G, Bettahar M (2016) RSC Adv 6:59858

    Article  CAS  ADS  Google Scholar 

  79. Le TA, Kang JK, Park ED (2019) Appl Catal A Gen 581:67

    Article  CAS  Google Scholar 

  80. Filippova EO, Tokranov AA, Shafigulin R, Bulanova A (2020) Russ J Appl Chem 93:741

    Article  CAS  Google Scholar 

  81. Zhu L, Sun H, Fu H, Zheng J, Zhang N, Li Y, Chen BH (2015) Appl Catal A Gen 499:124

    Article  CAS  Google Scholar 

  82. Widegren JA, Finke RG (2002) Inorg Chem 41:1558

    Article  CAS  PubMed  Google Scholar 

  83. Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR, Dupont J (2003) Chem Eur J 9:3263

    Article  CAS  PubMed  Google Scholar 

  84. Akbayrak S (2018) J Colloid Interface Sci 530:459

    Article  CAS  PubMed  ADS  Google Scholar 

  85. Konuspayev S, Shaimardan M, Annas N, Abildin TS, Suleimenov YY (2021) Hydrogenation of benzene and toluene over supported rhodium and rhodium-gold catalysts. In: MATEC Web of conferences. EDP Sciences, p 01026

  86. Ghosh S, Acharyya SS, Adak S, Konathala LNS, Sasaki T, Bal R (2014) Green Chem 16:2826

    Article  CAS  Google Scholar 

  87. Castellan A, Bart JCJ, Cavallaro S (1991) Catal Today 9:237

    Article  CAS  Google Scholar 

  88. Cao H, Zhu B, Yang Y, Xu L, Yu L, Xu Q (2018) Chin J Catal 39:899

    Article  CAS  Google Scholar 

  89. Liu Z, Liu S, Li Z (2020) Catalytic technology for selective hydrogenation of benzene to cyclohexene. Springer

    Book  Google Scholar 

  90. Mokaya R, Poliakoff M (2005) Nature 437:1243

    Article  CAS  PubMed  ADS  Google Scholar 

  91. Zheng H, Lin M, Qiu T, Shen Y, Tian H, Zhao S (2017) Chem Eng Res Des 117:346

    Article  CAS  Google Scholar 

  92. Naota T, Takaya H, Murahashi S-I (1998) Chem Rev 98:2599

    Article  CAS  PubMed  Google Scholar 

  93. Chen B-C, Yu B-Y, Lin Y-L, Huang H-P, Chien I-L (2014) Ind Eng Chem Res 53:7079

    Article  CAS  Google Scholar 

  94. Nagahara H, Ono M, Konishi M, Fukuoka Y (1997) Appl Surf Sci 121:448

    Article  ADS  Google Scholar 

  95. Fukuoka Y, Nagahara H (1991) In: Prepr of 20th ACS meeting, division of petr chem, vol 36, p 548

  96. Chen Z, Sun H, Peng Z, Gao J, Li B, Liu Z, Liu S (2019) Ind Eng Chem Res 58:13794

    Article  CAS  Google Scholar 

  97. Suppino RS, Landers R, Cobo AJG (2013) Appl Catal A Gen 452:9

    Article  CAS  Google Scholar 

  98. Hronec M, Cvengrošová Z, Králik M, Palma G, Corain B (1996) J Mol Catal A Chem 105:25

    Article  CAS  Google Scholar 

  99. Zhang T, Wang Z, Zhao Q, Li F, Xue W (2015) J Nanomater 2015:67089

    Google Scholar 

  100. Liu H, Liang S, Wang W, Jiang T, Han B (2011) J Mol Catal A Chem 341:35

    Article  CAS  Google Scholar 

  101. Wang W, Liu H, Wu T, Zhang P, Ding G, Liang S, Jiang T, Han B (2012) J Mol Catal A Chem 355:174

    Article  CAS  Google Scholar 

  102. Schwab F, Lucas M, Claus P (2011) Angew Chem Int Ed 50:10453

    Article  CAS  Google Scholar 

  103. Yu XL, Li Y, Xin SM, Yuan PQ, Yuan WK (2018) Ind Eng Chem Res 57:1961

    Article  CAS  Google Scholar 

  104. Nagahara H, Ono M, Konishi M, Fukuoka Y (1997) Appl Surf Sci 121–122:448

    Article  ADS  Google Scholar 

  105. Zhou G, Wang H, Tian J, Pei Y, Fan K, Qiao M, Sun B, Zong B (2018) ChemCatChem 10:1184

    Article  CAS  Google Scholar 

  106. Zhang Q, Yan X, Zheng P, Wang Z (2017) Chin J Chem Eng 25:294

    Article  CAS  Google Scholar 

  107. Chacón G, Dupont J (2019) ChemCatChem 11:333

    Article  Google Scholar 

  108. Roucoux A (2005) Stabilized noble metal nanoparticles: an unavoidable family of catalysts for arene derivative hydrogenation. In: Coperet C, Chaudret B (eds) Surface and interfacial organometallic chemistry and catalysis. Topics in organometallic chemistry, vol 16. Springer, p 261

  109. Zheng R, Liu Z, Wang Y, Xie Z (2020) Chin J Catal 41:1032

    Article  CAS  Google Scholar 

  110. Lu F, Liu J, Xu J (2003) Progr Chem 15:338

    CAS  Google Scholar 

  111. Imamura H, Nishimura K, Sumioki K, Fujimoto M, Sakata Y (2001) Chem Lett 30:450

    Article  Google Scholar 

  112. Akhrem AA (2012) Birch reduction of aromatic compounds. Springer

    Google Scholar 

  113. Brezina K, Jungwirth P, Marsalek O (2020) J Phys Chem Lett 11:6032

    Article  CAS  PubMed  Google Scholar 

  114. Zimmerman HE (2012) Acc Chem Res 45:164

    Article  CAS  PubMed  Google Scholar 

  115. Fuhry MAM, Colosimo C, Gianneschi K (2001) J Chem Educ 78:949

    Article  CAS  Google Scholar 

  116. Kung JW, Baumann S, von Bergen M, Müller M, Hagedoorn PL, Hagen WR, Boll M (2010) J Am Chem Soc 132:9850

    Article  CAS  PubMed  Google Scholar 

  117. Rao GSRS (2003) Pure Appl Chem 75:1443

    Article  Google Scholar 

  118. Burrows J, Kamo S, Koide K (2021) Science 374:741

    Article  CAS  PubMed  ADS  Google Scholar 

  119. Davison N, Quirk JA, Tuna F, Collison D, McMullin CL, Michaels H, Morritt GH, Waddell PG, Gould JA, Freitag M, Dawson JA, Lu E (2022) Chem 9:576

    Article  Google Scholar 

  120. Narayanam JMR, Stephenson CRJ (2011) Chem Soc Rev 40:102

    Article  CAS  PubMed  Google Scholar 

  121. Chatterjee A, König B (2019) Angew Chem Int Ed 58:14289

    Article  CAS  Google Scholar 

  122. Ma D, Zhai S, Wang Y, Liu A, Chen C (2019) Molecules 24:330

    Article  PubMed  PubMed Central  Google Scholar 

  123. Xu Y, Qiu C, Fan X, Xiao Y, Zhang G, Yu K, Ju H, Ling X, Zhu Y, Su C (2020) Appl Catal B 268:118457

    Article  CAS  Google Scholar 

  124. Imamura K, Okubo Y, Ito T, Tanaka A, Hashimoto K, Kominami H (2014) RSC Adv 4:19883

    Article  CAS  ADS  Google Scholar 

  125. Chatterjee A, König B (2019) Angew Chem 131:14427

    Article  ADS  Google Scholar 

  126. Yang J, Qin H, Yan K, Cheng X, Wen J (2021) Adv Synth Catal 363:5407

    Article  CAS  Google Scholar 

  127. Li J, He L, Liu X, Cheng X, Li G (2019) Angew Chem 131:1773

    Article  ADS  Google Scholar 

  128. Li B, Ge H (2019) Sci Adv 5:eaaw2774

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  129. Birch AJ (1946) Nature 158:60

    ADS  Google Scholar 

  130. Benkeser RA, Kaiser EM, Lambert RF (1964) J Am Chem Soc 86:5272

    Article  CAS  Google Scholar 

  131. Swenson KE, Zemach D, Nanjundiah C, Kariv-Miller E (1983) J Org Chem 48:1777

    Article  CAS  Google Scholar 

  132. Chaussard J, Combellas C, Thiebault A (1987) Tetrahedron Lett 28:1173

    Article  CAS  Google Scholar 

  133. Ishifune M, Yamashita H, Kera Y, Yamashita N, Hirata K, Murase H, Kashimura S (2003) Electrochim Acta 48:2405

    Article  CAS  Google Scholar 

  134. Peters BK, Rodriguez KX, Reisberg SH, Beil SB, Hickey DP, Kawamata Y, Collins M, Starr J, Chen L, Udyavara S (2019) Science 363:838

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  135. Hayashi K, Griffin J, Harper KC, Kawamata Y, Baran PS (2022) J Am Chem Soc 144:5762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Franck H-G, Stadelhofer JW (1988) Production and uses of benzene derivatives. In: Industrial aromatic chemistry: raw materials, processes, products. Springer, p 132

  137. Henríquez A, Melin V, Moreno N, Mansilla HD, Contreras D (2019) Molecules 24:2244

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hong Y, Sun D, Fang Y (2018) Chem Cent J 12:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. O’Connor RP, Schmidt LD (2001) Oxygenates and olefins from catalytic partial oxidation of cyclohexane and n-hexane in single-gauze chemical reactors. In: Studies in surface science and catalysis. Elsevier, p 289

  140. Shiraishi Y, Sugano Y, Ichikawa S, Hirai T (2012) Catal Sci Technol 2:400

    Article  CAS  Google Scholar 

  141. Liu X, Conte M, He Q, Knight DW, Murphy DM, Taylor SH, Whiston K, Kiely CJ, Hutchings GJ (2017) Chem Eur J 23:11834

    Article  CAS  PubMed  Google Scholar 

  142. Ghiaci M, Hosseini SM, Shahzeydi A, Martínez-Huerta Mv (2016) RSC Adv 6:78487

  143. Katariya A, Freund H, Sundmacher K (2009) Ind Eng Chem Res 48:9534

    Article  CAS  Google Scholar 

  144. Karabach YY, Kirillov AM, Haukka M, Kopylovich MN, Pombeiro AJL (2008) J Inorg Biochem 102:1190

    Article  CAS  PubMed  Google Scholar 

  145. Kumar R, Sithambaram S, Suib SL (2009) J Catal 262:304

    Article  CAS  Google Scholar 

  146. Vandenbergh J, Schweitzer-Chaput B, Klussmann M, Junkers T (2016) Macromolecules 49:4124

    Article  CAS  ADS  Google Scholar 

  147. Abdelaty MS (2017) Polym Sci 3:12

    Article  Google Scholar 

  148. Kizilcan N, Mermutlu M (2014) J Appl Polym Sci 131:39918

    Article  Google Scholar 

  149. Monos TM, Jaworski JN, Stephens JC, Jamison TF (2020) Synlett 31:1888

    Article  CAS  Google Scholar 

  150. Wang Y, Zhang J, Wang X, Antonietti M, Li H (2010) Angew Chem Int Ed 49:3356

    Article  CAS  Google Scholar 

  151. Barzan C, Damin AA, Budnyk A, Zecchina A, Bordiga S, Groppo E (2016) J Catal 337:45

    Article  CAS  Google Scholar 

  152. Huang J, Qian R, Wang S, Cao H (2020) Chin J Org Chem 41:1639

    Article  Google Scholar 

  153. Pisk J, Agustin D, Poli R (2019) Molecules 24:783

    Article  PubMed  PubMed Central  Google Scholar 

  154. Tong J, Wang W, Su L, Li Q, Liu F, Ma W, Lei Z, Bo L (2017) Catal Sci Technol 7:222

    Article  CAS  Google Scholar 

  155. Boudjema S, Rabah H, Choukchou-Braham A (2017) Acta Phys Pol A 132:469

    Article  CAS  ADS  Google Scholar 

  156. Wei YN, Li H, Yue F, Xu Q, Wang JD, Zhang Y (2016) RSC Adv 6:107104

    Article  CAS  ADS  Google Scholar 

  157. Nakahara K, Hirano K, Maehata R, Kita Y, Fujioka H (2011) Org Lett 13:2015

    Article  CAS  PubMed  Google Scholar 

  158. Schultz AG, Malachowski WP, Pan Y (1997) J Org Chem 62:1223

    Article  CAS  Google Scholar 

  159. Wilds AL, Nelson NA (1953) J Am Chem Soc 75:5366

    Article  CAS  Google Scholar 

  160. Schultz AG, Dai M (1999) Tetrahedron Lett 40:645

    Article  CAS  Google Scholar 

  161. Baschieri A, Amorati R, Valgimigli L, Sambri L (2019) J Org Chem 84:13655

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Tahir Aminzai or Erdal Yabalak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminzai, M.T., Azizi, N., Nural, Y. et al. Recent progress in the reduction of benzene derivatives and their industrial applications. Monatsh Chem 155, 115–129 (2024). https://doi.org/10.1007/s00706-023-03154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03154-4

Keywords

Navigation