Skip to main content
Log in

Electrochemical analysis of methyl orange and simultaneous analysis with tartrazine using the poly(riboflavin)-modified carbon paste electrode

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The purpose of the current work is to develop an electrochemical method for the detection of methyl orange and to evaluate its behaviour at bare carbon paste sensor and poly(riboflavin)-modified carbon paste sensor (PRFMCPS). Cyclic voltammetry technique was used for the determination of the analyte. The surface morphology of the electrochemical sensor was characterised by field emission scanning electron microscopy. PRFMCPS creates an electrocatalytic contact on the oxidation of methyl orange. PRFMCPS properties were estimated using parameter such as pH of solution, scan rate, repeatability, reproducibility, and stability by cyclic voltammetry. The pH studies done by varying the pH in the range of 5.5–8.0 indicated that the electrode showed high current response at pH 6.5. The scan rate analysis concluded that the reaction is adsorption controlled. The limit of detection and limit of quantification was found to be 0.699 μM and 0.023 μM, respectively, in the linear range of 0.6–8.0 μM. The selectivity of the developed electrode was tested by simultaneous analysis with tartrazine. The developed electrode showed good stability, reproducibility, and repeatability. Electrochemical oxidation of methyl orange in phosphate buffer solution of 0.2 M in pH 6.5 was examined for water sample by the application of PRFMCPS.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data underlying this article are presented in the main manuscript. The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Huimin Y, Jintao L, Li Z, Zhenhai L (2016) Int J Electrochem Sci 11:1121

    Article  Google Scholar 

  2. Dutta SK, Amin MK, Ahmed J, Elias M, Mahiuddin M (2022) S Afr J Chem Eng 40:195

    Google Scholar 

  3. Zheng L, Wang C, Shu Y, Yan X, Li L (2015) Colloids Surf A Physicochem 468:129

    Article  CAS  Google Scholar 

  4. Rajendrachari S, Basavegowda N, Vinaykumar R, Narsimhachary D, Somu P, Lee MJ (2023) Inorg ChemCommun 155:111010

    Article  CAS  Google Scholar 

  5. Shan Z, Jie Y, Jing Z, Xiaojing D, Yongning W, Bing S (2012) Food Anal Method 5:1018

    Article  Google Scholar 

  6. Eric M, Yongsheng D, Maria FM, Carlos DG (2007) Food Chem 102:1027

    Article  Google Scholar 

  7. Manjunatha JG (2018) J Food Drug Anal 26:292

    Article  CAS  PubMed  Google Scholar 

  8. Karimi-Maleh H, Beitollahi H, Senthil Kumar P, Tajik S, Mohammadzadeh Jahani P, Karimi F, Karaman C, Vasseghian Y, Baghayeri M, Rouhi J, Show PL, Rajendran S, Fu L, Zare N (2022) Food Chem Toxicol 164:961

    Article  Google Scholar 

  9. Abdi H, Amouzegar A, Azizi F (2019) Iran J Pharm Res 18:1

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Beitollahi H, Tajik S, Maleh HK, Hosseinzadeh R (2013) Appl Organomet Chem 27:444

    Article  CAS  Google Scholar 

  11. Beitollahi H, Tajik S, Aflatoonian MR, Makarem A (2022) J Electrochem Sci Eng 12:199

    Article  CAS  Google Scholar 

  12. Mohammadi SZ, Mousazadeh (2022) J Electrochem Sci Eng 12:6

    Google Scholar 

  13. Karami-Kolmoti P, Beitollahi H, Modiri S (2023) J Food Meas Charact 17:1974

    Article  Google Scholar 

  14. Nejad FG, Beitollahi H, Sheikhshoaie I (2023) Diagnostics 13:632

    Article  Google Scholar 

  15. Raril C, Manjunatha JG (2018) Anal Bioanal Electrochem 10:488

    CAS  Google Scholar 

  16. Tajik S, Aghaei Afshar A, Shamsaddini S, Bagher Askari M, Dourandish Z, Garkani Nejad F, Beitollahi H, Di Bartolomeo A (2023) Ind Eng Chem Res 62:4473

    Article  CAS  Google Scholar 

  17. Rajendrachari S, Adimule V, Gulen M, Khosravi F, Somashekharappa KK (2022) Materials 15:7591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rajendrachari S, Adimule VM, Jayaprakash GK, Pandith A (2023) Mater Res Express 10:054003

    Article  Google Scholar 

  19. Rajendrachari S, Jayaprakash GK, Pandith A, Karaoglanli AC, Uzun O (2022) Catalysts 12:994

    Article  CAS  Google Scholar 

  20. Mahale RS, Rajendrachari S, Vasanth S, Vinaykumar R (2022) Biointerface Res Appl Chem 12:4557

    CAS  Google Scholar 

  21. Pavitra V, Praveen BM, Nagaraju G, Shashanka R (2022). Top Catal. https://doi.org/10.1007/s11244-021-01553-7

    Article  Google Scholar 

  22. Manjunatha JG, Kumara Swamy BE, Mamatha GP, Ongera G, Sherigara BS (2011) Anal Bioanal Electrochem 3:146

    Google Scholar 

  23. Sun CL, Su CH, Wu JJ (2015) Biosens Bioelectron 67:327

    Article  CAS  PubMed  Google Scholar 

  24. Mu-Tao H, Thou-Jen W (2017) J Electroanl Chem 795:130

    Article  Google Scholar 

  25. Benzhi L, Hui C, Liqiang C, Hongmei Z (2017) Int J Electrochem Sci 12:9907

    Article  Google Scholar 

  26. Hongjun Y, Allen JB (1992) J Electroanal Chem 339:423

    Article  Google Scholar 

  27. Hareesha N, Manjunatha JG (2020) Mater Res Innov 24:349

    Article  CAS  Google Scholar 

  28. Mielech K (2003) J Trace Microprobe Tech 21:111

    Article  CAS  Google Scholar 

  29. Azab SM, Fekry AM (2017) New J Chem 41:11846

    Article  CAS  Google Scholar 

  30. Fekry AM, Azab SM, Shehata M, Ameer MA (2015) RSC Adv 5:51662

    Article  CAS  Google Scholar 

  31. Mielech K (2017) Sens Actuators B Chem 240:1257

    Article  Google Scholar 

  32. Sathish R, Kumara Swamy BE, Jayadevappa H (2012) Electrochim Acta 61:78

    Article  Google Scholar 

  33. Goyal RN, Gupta VK, Oyama M, Bachheti N (2005) Electrochem Commun 7:803

    Article  CAS  Google Scholar 

  34. Quintino MSM, Araki K, Toma HE, Angnes L (2002) Electroanalysis 14:1629

    Article  CAS  Google Scholar 

  35. der Wohlmuth Silva S, Venzke CD, Bitencourt Welter J, Schneider DE, Zoppas Ferreira J, Siqueira Rodrigues MA, Moura Bernardes A (2019) Int J Environ Res 16:816

    Google Scholar 

  36. Reddaiah K, Madhusudana Reddy T, Raghu P (2012) J Electroanal Chem 682:164

    Article  CAS  Google Scholar 

  37. D’Souza ES, Manjunatha JG, Raril C, Tigari G, Pushpanjali PA (2020) Anal Bioanal Chem Res 7:461

    Google Scholar 

  38. Lavanya N, Radhakrishnan S, Sekar C, Navaneethan M, Hayakawa (2013) Analyst 138:2061

    Article  CAS  PubMed  Google Scholar 

  39. Qi H, Cao Z, Hou L (2011) Spectrochim Acta A Mol Biomol Spectrosc 78:211

    Article  PubMed  Google Scholar 

  40. Perez-Ruiz T, Martínez-Lozano C, Tomás V, Val O (1994) Analyst 119:1199

    Article  CAS  Google Scholar 

  41. Kotkar RM, Desai PB, Srivastava AK (2007) Sens Actuators B: Chem 124:90

    Article  CAS  Google Scholar 

  42. Tigari G, Manjunatha JG (2020) J Sci-Adv Mater Dev 5:56

    Google Scholar 

  43. Safavi A, Maleki N, Ershadifar H, Tajabadi F (2010) Anal Chim Acta 674:176

    Article  CAS  PubMed  Google Scholar 

  44. Manjunatha JG (2017) Sens Bio-Sens Res 16:79

    Article  Google Scholar 

  45. Rajendrachari S, Basavegowda N, Vinaykumar R, Narsimhachary D, Somu P, Lee MJ (2023) Inorg Chem Commun 155:111010

    Article  CAS  Google Scholar 

  46. Van Nguyen T, Vu DC, Pham VH, Pham TB, Bui H (2021) Optik 231:166431

    Article  CAS  Google Scholar 

  47. Nikhil JL, Manjunatha JG, Hareesha N, Kanthappa B, Karthik CS, Mallu P, Alotman ZA (2023) J Electron Mater 52:7021

    Article  CAS  Google Scholar 

  48. Tcheumi HL, Babu BR (2017) Int J Environ Anal Chem 97:1207

    Article  CAS  Google Scholar 

  49. Liu J, Zhang C, Zhang S, Yu H, Xie W (2020) Chin Chem Lett 31:539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.G. Manjunatha gratefully acknowledges the financial support from VGST, Bangalore under Research project. No. K-FIST (L2)/GRD-1020/2021-22/430. Dr Samar A. Aldossari and Dr. Mohammed S. Mushab gratefully acknowledge the financial support from Researchers Supporting Project number (RSPD2023R663), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Manjunatha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asha, M., Manjunatha, J.G., Moulya, K.P. et al. Electrochemical analysis of methyl orange and simultaneous analysis with tartrazine using the poly(riboflavin)-modified carbon paste electrode. Monatsh Chem 155, 37–45 (2024). https://doi.org/10.1007/s00706-023-03137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03137-5

Keywords

Navigation