Skip to main content
Log in

Determination of tinidazole by voltammetric analysis using poly (L-arginine) modified carbon paste electrode

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The current study presents the analysis of tinidazole with the aid of electrochemical analysis by utilizing 0.2 M of phosphate buffer saline and a modified carbon paste electrode. Poly(L-arginine) fabricated carbon paste electrode (PLAMCPE) was obtained by polymerizing L-arginine (L-agn) onto a bare carbon paste electrode (BCPE) by applying electropolymerisation method at pH 6.5. To examine the electrochemical response and characterization of the developed PLAMCPE, differential pulse voltammetry (DPV),  cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscope techniques were implemented. The PLAMCPE shows significantly enhanced electrochemical sensitivity for the reduction of tinidazole compared to BCPE. At optimal working circumstances, the consequences of several parameters like scan rate, pH, concentration variation, and active surface area were analyzed. By examining the scan rate, the reaction was found to be diffusion controlled. The attained values of limit of detection was 0.0841 μM, and limit of quantification was 0.2803 μM at a linear range of 0.2 to 9.0 μM for DPV method. Moreover, PLAMCPE shows great selectivity and sensitivity at sensing tinidazole in the occurrence of other interfering organic dyes and metal ions. In addition, it demonstrates commendable repetitiveness, stability, and reproducibility. The developed electrode has a remarkable recovery rate indicating its applicability to the real sample.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Alfaro-Fuentes I, Castro-Ramírez R, Ortiz-Pastrana N, Medina-Guerrero RM, Soler-Jiménez LC, Martínez-Rodríguez I, Betancourt-Lozano M, Ibarra-Castro L, Barba-Behrens N, Fajer-Ávila EJ (2017) J Inorg Biochem 176:159

    CAS  PubMed  Google Scholar 

  2. Sobel JD, Nyirjesy P, Brown W (2001) Clin Infect Dis 33:13411346

    Google Scholar 

  3. Escobedo AA, Ballesteros J, González-Fraile E, Almirall PA (2016) Acta Trop 153:120

    CAS  PubMed  Google Scholar 

  4. Pasupuleti V, Escobedo AA, Deshpande A, Thota P, Roman Y, Hernandez AV (2014) PLoS Negl Trop Dis 8:e2733

    PubMed  PubMed Central  Google Scholar 

  5. Fung HB, Doan TL (2005) Clin Ther 27:1859

    CAS  PubMed  Google Scholar 

  6. Thulkar J, Kriplani A, Agarwal N (2012) Indian J Pharmacol 44:243

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kauser H, Qadir M, Anwar W (2014) J Family Med Prim Care 3:467

    PubMed  PubMed Central  Google Scholar 

  8. Anhaee Nasseri Z, Mirsadraee M, Manafi Varkiani M, Ghaderi Y, Berenji F, Ghaffari S (2022) J Parasitol Res 9:1

    Google Scholar 

  9. Aase S, Olsen AK, Roland M, Fagerhol MK, Liavag I, Bergan T, Leinebo O (1983) Eur J Clin Pharmacol 24:425

    CAS  PubMed  Google Scholar 

  10. Vaghela BK, Rao SS (2013) J Pharm Bioallied Sci 5:298

    PubMed  PubMed Central  Google Scholar 

  11. Kamal AH, El-Malla SF (2019) Microchem J 150:104151

    CAS  Google Scholar 

  12. Sebaiy MM, Hassan WS, Elhennawy ME (2019) J Chromatogr Sci 57:724

    CAS  PubMed  Google Scholar 

  13. Singh L, Nanda S (2011) East Cent Afr J Pharm Sci 14:75

    Google Scholar 

  14. Okunrobo LO (2007) World J Chem 2:63

    Google Scholar 

  15. Prasad CVN, Sripriya V, Saha RN, Parimoo P (1999) J Pharm Biomed Anal 21:961

    CAS  PubMed  Google Scholar 

  16. Basavaiah K, Nagegowda P, Chandrashekar U (2005) Indian J Chem Technol 12:273

    CAS  Google Scholar 

  17. Slamnik M (1976) J Pharm Sci 65:736

    CAS  PubMed  Google Scholar 

  18. Alnajjar A, Hamed H, AbuSeada, Idris AM (2007) Talanta 72:842

  19. Moulya KP, Manjunatha JG, Aljuwayid AM, Habila MA, Sillanpaa M (2023) Results Chem 5:100809

    CAS  Google Scholar 

  20. Manjunatha JG, Kanthappa B, Hareesha N, Raril C, Tighezza AM, Albaqami MD (2024) Chem Afr 7:1141

    CAS  Google Scholar 

  21. Beitollahi H, Safaei M, Tajik S (2019) Anal Bioanal Chem 6:81

    CAS  Google Scholar 

  22. Hareesha N, Manjunatha JG (2020) J Electroanal Chem 878:114533

    CAS  Google Scholar 

  23. Nikhil JL, Manjunatha JG, Hareesha N, Kanthappa B, Karthik CS, Mallu P, ALOthman ZA (2023) J Electron Mater 52:7021

  24. Moghaddam HM, Beitollahi H, Tajik S, Jahani S, Khabazzadeh H, Alizadeh R (2017) Russ J Electrochem 53:452

    CAS  Google Scholar 

  25. Yang M, Yang Y, Yang Y, Shen G, Yu R (2004) Anal Biochem 334:127

    CAS  PubMed  Google Scholar 

  26. Rajendrachari S, Adimule VM, Jayaprakash GK, Pandith A (2023) Mater Res Express 10:54003

    Google Scholar 

  27. Uniyal S, Sharma RK (2018) Biosens Bioelectron 116:37

    CAS  PubMed  Google Scholar 

  28. Beitollahi H, Askari MB, Bartolomeo AD (2022). Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2147836

    Article  Google Scholar 

  29. Rajendrachari S, Basavegowda N, Adimule VM, Avar B, Somu P, Saravana Kumar RM, Kwang-Hyun Baek (2022) Biosensors 12:1173

  30. Basande A, Beitollahi H (2023) J Electrochem Sci Eng 13:937

    CAS  Google Scholar 

  31. Raril C, Manjunatha JG (2020) Microchem J 154:104575

    CAS  Google Scholar 

  32. Shashanka R, Kumara Swamy BE (2020) SN Appl Sci 2:956

    CAS  Google Scholar 

  33. Bhimaraya K, Manjunatha JG, Hareesha N, Tighezza AM, Albaqami MD, Sillanpää M (2023) Heliyon 9:e20937

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Esfandiari S, Beitollahi H, Tajik S (2014) Anal Bioanal Electrochem 6:634

    Google Scholar 

  35. Tajik S, Dourandish Z, Nejad FG, Beitollahi H, Jahani PM, Bartolomeo AD (2022) Biosens Bioelectron 216:114674

    CAS  PubMed  Google Scholar 

  36. Rajendrachari S, Jayaprakash GK, Pandith A, Karaoglanli AC, Uzun O (2022) Catalysts 12:994

    CAS  Google Scholar 

  37. Mohammadnavaz A, Beitollahi H, Modiri S (2023) Inorg Chim Acta 548:121340

    CAS  Google Scholar 

  38. Manjunatha JG, Charithra MM (2019) Open Access J Chem 3:8

    Google Scholar 

  39. Rajendrachari S, Kumaraswamy BE (2020) Phys Chem Res 8:1

    Google Scholar 

  40. Zhang F, Gu S, Ding Y, Zhang Z, Li L (2013) Anal Chim Acta 770:53

    CAS  PubMed  Google Scholar 

  41. Pushpanjali PA, Manjunatha JG, Amrutha BM, Hareesha N (2021) Mater Res Innov 25:412

    CAS  Google Scholar 

  42. Raril C, Manjunatha JG (2020) J Anal Sci Technol 11:3

    Google Scholar 

  43. Pushpanjali PA, Manjunatha JG (2020) Electroanalysis 32:24742480

    Google Scholar 

  44. Hareesha N, Manjunatha JG (2020) Mater Res Innov 24:349

    CAS  Google Scholar 

  45. Manjunatha JG, Subbaiah NP, Hareesha N, Raril C, Tighezza AM, Albaqami MD (2023) Monatsh Chem 154:1235

    CAS  Google Scholar 

  46. Bhimaraya K, Manjunatha JG, Moulya KP, Tighezza AM, Albaqami MD, Sillanpää M (2023) Chemosensors 11:191

    CAS  Google Scholar 

  47. Shahrokhiana S, Rastgar S (2012) Electrochim Acta 78:422

    Google Scholar 

  48. Taye A, Amare M (2016) Bull Chem Soc Ethiop 30:1

    CAS  Google Scholar 

  49. Sawkar RR, Shanbhag MM, Tuwar SM, Shetti NP (2022) Sens Int 3:100192

    Google Scholar 

  50. Jos T, Jose AR, Sivasankaran U, Kumar KG (2015) J Electrochem Soc 162:B94

    CAS  Google Scholar 

  51. Santhosh HM, Mamatha GP, Pradeep G (2018) Int J Res Pharm Chem 8:88

    Google Scholar 

  52. Alagumalai K, Ragurethinam S, Shen-Ming C, Sivakumar MB, Alagarsamy P (2021) Process Saf Environ Prot 148:992

    CAS  Google Scholar 

  53. Wang C, Fang W, Chunya L, Xiuling X, Ting L, Changfa W (2007) Dyes Pigm 75:213

    CAS  Google Scholar 

  54. Charithra MM, Manjunatha JG, Prinith NS, Pushpanjali PA, Girish T, Hareesha N (2022) Mater Res Innov 26:285

    CAS  Google Scholar 

Download references

Acknowledgements

Dr. J.G. Manjunatha gratefully acknowledges the financial support from VGST, Bangalore under Research project No. K-FIST (L2)/GRD-1020/2021-22/430. Samar A. Aldossari and Saikh Mohammad gratefully acknowledge the financial support from Researchers Supporting Project number (RSPD2024R663), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Manjunatha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prashanth, D.P., Manjunatha, J.G., Moulya, K.P. et al. Determination of tinidazole by voltammetric analysis using poly (L-arginine) modified carbon paste electrode. Monatsh Chem 155, 573–582 (2024). https://doi.org/10.1007/s00706-024-03209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-024-03209-0

Keywords

Navigation