Skip to main content
Log in

Rate enhancement of Os(VIII) catalyzed L-phenylalanine oxidation by hexacyanoferrate(III) by CTAB micellar medium: a kinetic study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The kinetic investigation of Os(VIII) accelerated oxidation of L-phenylalanine (L-Pheala) by hexacyanoferrate(III) (HCF(III)) in CTAB micellar medium was carried out by measuring the decrease in absorbance at 420 nm, which corresponds to HCF(III). By adjusting one variable at a time, the progression of the reaction has been inspected as a function of [OH], ionic strength, [CTAB], [Os(VIII)], [L-Pheala], [HCF(III)], and temperature using the pseudo-first-order condition. The results show that [OH], [CTAB], and [L-Pheala] are the critical parameters with a discernible influence on reaction rate. The reaction exhibits first-order kinetics in the examined concentration range of Os(VIII), HCF(III), as well as at lower [L-Pheala] and [OH], but follows less than unit order at higher concentrations of L-Pheala and alkali. The incremental trend in reaction rate with electrolyte concentration demonstrates a positive salt effect. CTAB significantly catalyzes the process, and once at a maximum, the rate remains almost constant as [CTAB] increases. The observed decrease in CTAB CMC could be attributed to reduced repulsion between the positively charged heads of surfactant molecules caused by the negatively charged HCF(III) and OH. The activation values also support our proposed outer-sphere electron transport mechanism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iioka T, Takahashi S, Yoshida Y, Matsumura Y, Hiraoka S, Sato H (2019) J Comput Chem 40:279

    Article  CAS  PubMed  Google Scholar 

  2. Naik RM, Srivastava A, Tiwari AK, Yaday SBS, Verma AK (2007) J Iran Chem Soc 4:63

    Article  CAS  Google Scholar 

  3. Naik RM, Srivastava A, Verma AK, Yadav SBS, Singh R, Prasad S (2007) Bioinorg React Mech 6:185

    CAS  Google Scholar 

  4. Omondi RO, Stephen O, Ojwach SO, Jaganyi D (2020) Inorg Chim Acta 512:119883

    Article  CAS  Google Scholar 

  5. Srivastava A, Naik RM, Rai J, Asthana A (2021) Russ J Phys Chem A 95:2545

    Article  CAS  Google Scholar 

  6. Singh A, Singh A (2013) Prog React Kinet Mech 38:105

    Article  CAS  Google Scholar 

  7. Naik RM, Tewari RK, Singh PK, Tiwari AK, Prasad S (2005) Trans Met Chem 30:968

    Article  CAS  Google Scholar 

  8. Prasad S, Naik RM, Srivastava A (2008) Spectrochim Acta A 70:958

    Article  Google Scholar 

  9. Srivastava A, Sharma V, Prajapati A, Srivastava N, Naik RM (2019) Chem Chem Technol 13:275

    Article  CAS  Google Scholar 

  10. Srivastava A, Sharma V, Singh VK, Srivastava K (2022) J Mex Chem Soc 66:57

    CAS  Google Scholar 

  11. Gupta A, Pandey A (2017) Ind J Sci Res 13:66

    CAS  Google Scholar 

  12. Asghar BH, Altas HM, Fawzi A (2007) J Saudi Chem Soc 21:887

    Article  Google Scholar 

  13. Pandey E, Grover N, Kambo N, Uphadyay SK (2004) Ind J Chem A 43:1183

    Google Scholar 

  14. Naik RM, Srivastava A, Verma AK (2008) Turk J Chem 32:495

    CAS  Google Scholar 

  15. Sharanabasamma K, Angadi MA, Tuwar SM (2011) Open Catal J 4:1

    Article  CAS  Google Scholar 

  16. Singh HS, Singh B, Gupta A, Singh AK (1999) Oxid Commun 22:146

    CAS  Google Scholar 

  17. Goel A, Sharma R (2012) J Chem Eng Mater Sci 3:1

    CAS  Google Scholar 

  18. Nowdari A, Adari KK, Gollapalli NR, Parvataneni V (2009) E-J Chem 6:93

    Article  Google Scholar 

  19. Goel A, Sharma S (2010) Trans Met Chem 35:549

    Article  CAS  Google Scholar 

  20. Bagalkoti J, Nandibewoor ST (2019) Monatsh Chem 150:469

    Article  Google Scholar 

  21. Farokhi SA, Nandibewoor ST (2009) Catal Lett 129:207

    Article  CAS  Google Scholar 

  22. Al-Subu MM (2001) Trans Met Chem 26:461

    Article  CAS  Google Scholar 

  23. Al-Subu MM, Jondi WJ, Amer AA, Hannoun M, Musmar MJ (2003) Chem Heterocycl Compd 39:478

    Article  CAS  Google Scholar 

  24. Rani DFG, Pushparaj FJM, Alphonse I, Rangappa KS (2002) Ind J Chem 41B:2153

    CAS  Google Scholar 

  25. Sharma P, Sailani R, Meena A, Khandelwal CL (2020) J Chem Res 5–6:295

    Article  Google Scholar 

  26. Das B, Kumar B, Begum W (2022) Chem Afr 5:459

    Article  CAS  Google Scholar 

  27. Zahed MA, Matinvafa MA, Azari A (2022) Discov Water 5:2

    Google Scholar 

  28. Mohanambigai DC, Jenif D (2021) SPAST Abstr 1:1

    Google Scholar 

  29. Karimi MA, Mozaheb MA, Hatefi-Mehrjardi A (2015) J Anal Sci Technol 6:1

    Article  Google Scholar 

  30. Shah S, Chatterjee SK, Bhattarai A (2016) J Surfact Deterg 19:201

    Article  CAS  Google Scholar 

  31. Tiwari S, Mall C, Solanki PP (2020) Surf Interfaces 18:100427

    Article  CAS  Google Scholar 

  32. Shah SK, Bhattarai A (2020). J Chem. https://doi.org/10.1155/2020/5292385

    Article  Google Scholar 

  33. Rauf A, Baloch MK, Khan A, Khan Z, Rauf S (2016) J Chil Chem Soc 61:3013

    Article  CAS  Google Scholar 

  34. Acharya RC, Saran NK, Rao SR, Das MN (1982) Int J Chem Kinet 14:143

    Article  CAS  Google Scholar 

  35. Upadhyay SK (1983) Int J Chem Kinet 15:669

    Article  CAS  Google Scholar 

  36. Jose TP, Nandibewoor ST, Tuwar SM (2006) J Sulf Chem 27:25

    Article  CAS  Google Scholar 

  37. Zourab SM, Ezzo EM, El-Aila HJ, Salem JKJ (2003) J Disper Sci Technol 24:67

    Article  CAS  Google Scholar 

  38. Srivastava A, Manjusha S, Naik RM (2023) J Mex Chem Soc 67:46

    Article  CAS  Google Scholar 

  39. Ramanaiah M, Sailaja BBV (2014) Chem Speciat Bioav 26:119

    Article  Google Scholar 

  40. Domingo PL, Garc BA, Leal JM (1990) Can J Chem 68:228

    Article  CAS  Google Scholar 

  41. Chowdhury S, Rakshit A, Acharjee A, Ghosh A, Mahali K, Saha B (2020) Tenside Surf Det 57:298

    CAS  Google Scholar 

  42. Chowdhury S, Rakshit A, Acharjee A, Ghosh A, Mahali K, Saha B (2019) J Mol Liq 290:111247

    Article  Google Scholar 

  43. Tuwar SM, Nandibewoor ST, Raju JR (1991) Indian J Chem 30A:158

    CAS  Google Scholar 

  44. Billalli HB, Sharanabasamma K, Tuwar SM (2010) Prog Reac Kinet Mech 35:347

    Article  CAS  Google Scholar 

  45. Dubey S, Sharma N, Khandelwal CL (2003) Trans Met Chem 28:176

    Article  CAS  Google Scholar 

  46. Naik RM, Kumar B (2012) J Disper Sci Technol 33:647

    Article  CAS  Google Scholar 

  47. Graciani MM, Rodríguez MA, Moyá ML (1997) Int J Chem Kinet 29:377

    Article  Google Scholar 

  48. Bunton CA, Nome F, Quina FH, Romsted LS (1991) Acc Chem Res 24:357

    Article  CAS  Google Scholar 

  49. Brinchi L, Profio PD, Germani R, Savelli G, Tugliani M, Bunton CA (2000) Langmuir 16:10101

    Article  CAS  Google Scholar 

  50. Lopez-Cornejo P, Mozo JD, Roldan E, Domínguez M (2002) Chem Phys Lett 352:33

    Article  CAS  Google Scholar 

  51. Piszkiewicz D (1997) J Am Chem Soc 99:7695

    Article  Google Scholar 

  52. Sen PK, Gani N, Pal B (2013) Ind Eng Chem Res 52:2803

    Article  CAS  Google Scholar 

  53. Acharjee A, Rakshit A, Chowdhury S, Malik S, Barman MK, Ali MA, Saha B (2019) J Mol Liq 277:360

    Article  CAS  Google Scholar 

  54. Ghosh A, Das P, Saha D, Sar P, Ghosh SK, Saha B (2016) Res Chem Intermed 42:2619

    Article  CAS  Google Scholar 

  55. Jimenez R, Bueno E, Cano I, Corbacho E (2004) Int J Chem Kinet 26:627

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 65 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Goswami, M.K., Tiwari, D. et al. Rate enhancement of Os(VIII) catalyzed L-phenylalanine oxidation by hexacyanoferrate(III) by CTAB micellar medium: a kinetic study. Monatsh Chem 154, 1243–1251 (2023). https://doi.org/10.1007/s00706-023-03124-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03124-w

Keywords

Navigation