Skip to main content
Log in

Kinetic and Mechanistic Investigation of Os(VIII)-Catalyzed L-Tryptophan Oxidation by Hexacyanoferrate(III) in CTAB Micellar Medium

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The kinetics of Os(VIII)-accelerated L-tryptophan (Trp) oxidation by hexacyanoferrate(III) in CTAB micellar medium were investigated by measuring the decline in absorbance at 420 nm, which corresponds to [Fe(CN)6]3–. By adjusting one variable at a time, the progression of the reaction has been inspected as a function of [OH], ionic strength, [CTAB], [Os(VIII)], [Trp], [Fe(CN)\(_{6}^{{3 - }}\)], and temperature using the pseudo-first-order condition. The results show that [CTAB], [Trp], and [OH] are the critical parameters with a discernible influence on reaction rate. The reaction rate is independent of the [Fe(CN)\(_{6}^{{3 - }}\)]; hexacyanoferrate(III) is merely used up to regenerate the Os(VIII) during the reaction. In the investigated concentration range of Os(VIII), as well as at lower [OH] and [Trp], the reaction displays first-order kinetics with respect to [Os(VIII)], [OH], and [Trp] but follows less than unit order at larger Trp and alkali concentrations. The linear increase in reaction rate with added electrolyte is indicative of a positive salt effect. CTAB significantly catalyzes the process, and once at a maximum, the rate remains almost constant as [CTAB] increases. The observed decrease in CTAB CMC could be attributed to reduced repulsion between the positive charge heads of surfactant molecules caused by the negatively charged [Fe(CN)6]3–, OH, and [OsO5(OH)]3–.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. Iioka, S. Takahashi, Y. Yoshida, Y. Matsumura, S. Hiraoka, and H. Sato, J. Comput. Chem. 40, 279 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. R. M. Naik, A. Srivastava, A. K. Tiwari, S. B. S. Yaday, and A. K. Verma, J. Iran. Chem. Soc. 4, 63 (2007).

    Article  CAS  Google Scholar 

  3. R. M. Naik, A. Srivastava, A. K. Verma, S. B. S. Yadav, R. Singh, and S. Prasad, Bioinorg. React. Mech. 6, 185 (2007).

    CAS  Google Scholar 

  4. R. O. Omondi, O. Stephen, S. O. Ojwach, and D. Jaganyi, Inorg. Chim. Acta 512, 119883 (2020).

  5. A. Srivastava, R. M. Naik, J. Rai, and A. Asthana, Russ. J. Phys. Chem. A 95, 2545 (2021).

    Article  CAS  Google Scholar 

  6. A. Singh and A. Singh, Prog. React. Kinet. Mech. 38, 105 (2013).

    Article  CAS  Google Scholar 

  7. R. M. Naik, R. K. Tewari, P. K. Singh, A. K. Tiwari, and S. Prasad, Trans. Met. Chem. 30, 968 (2005).

    Article  CAS  Google Scholar 

  8. S. Prasad, R. M. Naik, and A. Srivastava, Spectrochim. Acta, Part A 70, 958 (2008).

    Article  Google Scholar 

  9. A. Srivastava, V. Sharma, A. Prajapati, N. Srivastava, and R. M. Naik, Chem. Chem. Technol. 13, 275 (2019).

    Article  CAS  Google Scholar 

  10. A. Srivastava, V. Sharma, V. K. Singh, and K. Srivastava, J. Mex. Chem. Soc. 66, 57 (2022).

    CAS  Google Scholar 

  11. A. Gupta and A. Pandey, Ind. J. Sci. Res. 13, 66 (2017).

    CAS  Google Scholar 

  12. B. H. Asgha, H. M. Altas, and A. Fawzi, J. Saudi Chem. Soc. 21, 887 (2007).

    Article  Google Scholar 

  13. E. Pandey, N. Grover, N. Kambo, and S. K. Uphadyay, Ind. J. Chem. A 43, 1183 (2004).

    Google Scholar 

  14. R. M. Naik, A. Srivastava, and A. K. Verma, Turk. J. Chem. 32, 495 (2008).

    CAS  Google Scholar 

  15. K. Sharanabasamma, M. A. Angadi, and S. M. Tuwar, Open Catal. J. 4, 1 (2011).

    Article  CAS  Google Scholar 

  16. H. S. Singh, B. Singh, A. Gupta, and A. K. Singh, Oxid. Commun. 22, 146 (1999).

    CAS  Google Scholar 

  17. A. Goel and R. Sharma, J. Chem. Eng. Mater. Sci. 3, 1 (2012).

    CAS  Google Scholar 

  18. A. Nowdari, K. K. Adari, N. R. Gollapalli, and V. Parvataneni, Electron. J. Chem. 6, 93 (2009).

    Google Scholar 

  19. A. Goel and S. Sharma, Trans. Met. Chem. 35, 549 (2010).

    Article  CAS  Google Scholar 

  20. J. Bagalkoti and S. T. Nandibewoor, Monatsh. Chem. 150, 1469 (2016).

    Article  Google Scholar 

  21. S. A. Farokhi and S. T. Nandibewoor, Catal. Lett. 129, 207 (2009).

    Article  CAS  Google Scholar 

  22. M. M. Al-Subu, Trans. Met. Chem. 26, 461 (2001).

    Article  CAS  Google Scholar 

  23. M. M. Al-Subu, W. J. Jondi, A. A. Amer, M. Hannoun, and M. J. Musmar, Chem. Heterocycl. Compd. 39, 478 (2003).

    Article  CAS  Google Scholar 

  24. D. F. J. Rani, F. J. M. Pushparaj, I. Alphonse, and K. S. Rangappa, Ind. J. Chem. B 41, 2153 (2002).

    Google Scholar 

  25. P. Sharma, R. Sailani, A. Meena, and C. L. Khandelwal, J. Chem. Res. 44, 295 (2020).

    Article  CAS  Google Scholar 

  26. B. Das, B. Kumar, and W. Begum, Chem. Africa 5, 459 (2022).

    Article  CAS  Google Scholar 

  27. M. A. Zahed, M. A. Matinvafa, and A. Azari, Discov. Water 5, 2 (2022).

    Google Scholar 

  28. D. C. Mohanambigai and D. Jenif, SPAST Abstr. 1, 1 (2021).

    Google Scholar 

  29. M. A. Karimi, M. A. Mozaheb, and A. Hatefi-Mehrjardi, J. Anal. Sci. Technol. 6, 1 (2015).

    Article  Google Scholar 

  30. S. Shah, S. K. Chatterjee, and A. Bhattarai, J. Surfact. Deterg. 19, 201 (2016).

    Article  CAS  Google Scholar 

  31. S. Tiwari, C. Mall, and P. P. Solanki, Surf. Interfaces 18, 100427 (2020).

  32. S. K. Shah and A. Bhattarai, J. Chem., 4653092 (2020).

  33. A. Rauf, M. K. Baloch, A. Khan, Z. Khan, and S. Rauf, J. Chil. Chem. Soc. 61, 3013 (2016).

    Article  CAS  Google Scholar 

  34. R. C. Acharya, N. K. Saran, S. R. Rao, and M. N. Das, Int. J. Chem. Kinet. 14, 143 (1982).

    Article  CAS  Google Scholar 

  35. S. K. Upadhyay, Int. J. Chem. Kinet. 15, 669 (1983).

    Article  CAS  Google Scholar 

  36. P. J. Timy, S. T. Nandibewoor, and S. M. Tuwar, J. Sulf. Chem. 27, 25 (2006).

    Google Scholar 

  37. S. M. Zourab, E. M. Ezzo, H. J. El-Aila, and J. K. Salem, J. Disper. Sci. Technol. 24, 67 (2003).

    CAS  Google Scholar 

  38. A. Srivastava, Manjusha, N. Srivastava, and R. M. Naik, J. Mex. Chem. Soc. 67, 46 (2023).

    Article  CAS  Google Scholar 

  39. L. Hadi, A. J. O. Richard, and E. R. Gavin, J. Am. Soc. Mass Spectrm. 15, 65 (2004).

    Article  Google Scholar 

  40. P. L. Domingo, B. A. Garc, and J. M. Leal, Can. J. Chem. 68, 228 (1990).

    Article  CAS  Google Scholar 

  41. S. Chowdhury, A. Rakshit, A. Acharjee, A. Ghosh, K. Mahali, and B. Saha, Tenside Surfact. Deterg. 57, 298 (2020).

    CAS  Google Scholar 

  42. S. Chowdhury, A. Rakshit, A. Acharjee, A. Ghosh, K. Mahali, and B. Saha, J. Mol. Liq. 290, 111247 (2019).

  43. S. M. Tuwar, S. T. Nandibewoor, and J. R. Raju, Ind. J. Chem. A 30, 158 (1991).

    Google Scholar 

  44. H. B. Billalli, K. Sharanabasamma, and S. M. Tuwar, Prog. React. Kinet. Mech. 35, 347 (2010).

    Article  CAS  Google Scholar 

  45. S. Dubey, N. Sharma, and C. L. Khandelwal, Trans. Met. Chem. 28, 176 (2003).

    Article  CAS  Google Scholar 

  46. R. M. Naik and B. Kumar, J. Disp. Sci. Technol. 33, 647 (2012).

    Article  CAS  Google Scholar 

  47. M. M. Graciani, M. A. Rodríguez, and M. L. Moyá, Int. J. Chem. Kinet. 29, 377 (1997).

    Article  Google Scholar 

  48. C. A. Bunton, F. Nome, F. H. Quina, and L. S. Romsted, Acc. Chem. Res. 24, 357 (1991).

    Article  CAS  Google Scholar 

  49. L. Brinchi, P. D. Profio, R. Germani, G. Savelli, M. Tugliani, and C. A. Bunton, Langmuir 16, 10101 (2000).

    Article  CAS  Google Scholar 

  50. P. Lopez-Cornejo, J. D. Mozo, E. Roldán, M. Domínguez, and F. Sanchez, Chem. Phys. Lett. 352, 33 (2002).

    Article  CAS  Google Scholar 

  51. D. Piszkiewicz, J. Am. Chem. Soc. 99, 7695 (1977).

    Article  CAS  Google Scholar 

  52. P. K. Sen, N. Gani, and B. Pal, Ind. Eng. Chem. Res. 52, 2803 (2013).

    Article  CAS  Google Scholar 

  53. A. Acharjee, A. Rakshit, S. Chowdhury, S. Malik, M. K. Barman, M. A. Ali, and B. Saha, J. Mol. Liq. 277, 360 (2019).

    Article  CAS  Google Scholar 

  54. A. Ghosh, P. Das, D. Saha, P. Sar, S. K. Ghosh, and B. Saha, Res. Chem. Intermed. 42, 2619 (2016).

    Article  CAS  Google Scholar 

  55. R. Jimenez, E. Bueno, I. Cano, and E. Corbacho, Int. J. Chem. Kinet. 26, 627 (2004).

    Article  Google Scholar 

Download references

Funding

We did not receive any specific grant for this research from any funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Srivastava.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Srivastava, N. & Srivastava, K. Kinetic and Mechanistic Investigation of Os(VIII)-Catalyzed L-Tryptophan Oxidation by Hexacyanoferrate(III) in CTAB Micellar Medium. Russ. J. Phys. Chem. 97, 2932–2941 (2023). https://doi.org/10.1134/S0036024423130022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423130022

Keywords:

Navigation