Skip to main content
Log in

S-shaped adsorption isotherms modeled by the Frumkin–Fowler–Guggenheim and Hill–de Boer equations

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, we used the Frumkin–Fowler–Guggenheim (FFG) and Hill–de Boer (HDB) isotherm models to describe previously published S-shaped isotherms involving water contaminant adsorption, specifically auramine-O and ortho-nitrophenol, onto solid materials. Although the two models differ in their mathematical formulations, they share three key parameters: the monolayer adsorption capacity (qm), the equilibrium constant representing adsorbate−adsorbent interactions, and the equilibrium constant representing adsorbate–adsorbate interactions. Upon comparing the data fitting capabilities of the FFG and HDB models, we found minimal differences. However, substantial discrepancies emerged in the fitted qm values. The FFG model yielded qm values that aligned with the plateaus evident in the auramine-O and ortho-nitrophenol isotherms, whereas the HDB model did not. This inconsistency in the HDB model was also observed when analyzing a hyperbolic tetracycline isotherm. In addition, we delved into the impact of the adsorbate−adsorbent and adsorbate–adsorbate interaction constants on simulated isotherm curves. Our findings revealed that the adsorbate−adsorbent interaction constant influenced the steepness of the simulated curves, while the adsorbate–adsorbate interaction constant determined the nature of isotherm curve generated by the two models (S-shaped or hyperbolic).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the datasets supporting the findings of this study are available within the article.

References

  1. Frumkin A (1925) Z Phys Chem 116:466

    Article  CAS  Google Scholar 

  2. Fowler RH, Guggenheim EA (1939) Statistical thermodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  3. Hill TL (1946) J Chem Phys 14:441

    Article  CAS  Google Scholar 

  4. De Boer JH (1953) The dynamical character of adsorption. Oxford University Press, London

    Google Scholar 

  5. Langmuir I (1916) J Am Chem Soc 38:2221

    Article  CAS  Google Scholar 

  6. Volmer M (1925) Z Phys Chem 115U:253

    Article  Google Scholar 

  7. Brião GDV, Chu KH (2022) J Chem Technol Biotechnol 97:3202

    Article  Google Scholar 

  8. Ramadoss R, Subramaniam D (2019) Sep Sci Technol 54:943

    Article  CAS  Google Scholar 

  9. Wu L, Tang J, Zhang S, Wang J, Ding X (2019) J Environ Qual 48:1489

    Article  PubMed  Google Scholar 

  10. Ali AM, Mahdy AM, Salem MZ (2021) Desalin Water Treat 209:71

    Article  CAS  Google Scholar 

  11. Mathangi JB, Kalavathy MH, Miranda LR (2021) Chem Eng Technol 44:892

    Article  CAS  Google Scholar 

  12. Hamadeen HM, Elkhatib EA (2022) J Water Process Eng 47:102703

    Article  Google Scholar 

  13. Elkhatib EA, Moharem ML, Saad AF, Attia FA (2023) Environ Eng Res 28:210545

    Article  Google Scholar 

  14. Hamdaoui O, Naffrechoux E (2007) J Hazard Mater 147:381

    Article  CAS  PubMed  Google Scholar 

  15. Chu KH, Tan BC (2021) Colloid Interface Sci Commun 45:100519

    Article  Google Scholar 

  16. Freundlich H (1907) Z Phys Chem 57:385

    Article  CAS  Google Scholar 

  17. Buttersack C (2019) Phys Chem Chem Phys 21:5614

    Article  CAS  PubMed  Google Scholar 

  18. Fideles RA, Ferreira GMD, Teodoro FS, Adarme OFH, da Silva LHM, Gil LF, Gurgel LVA (2018) J Colloid Interface Sci 515:172

    Article  CAS  PubMed  Google Scholar 

  19. Teodoro FS, Elias MMC, Ferreira GMD, Adarme OFH, Savedra RML, Siqueira MF, da Silva LHM, Gil LF, Gurgel LVA (2018) J Colloid Interface Sci 512:575

    Article  CAS  PubMed  Google Scholar 

  20. Benosmane S, Bendjelloul M, Elandaloussi EH, Touhami M, de Ménorval L-C (2021) Chem Pap 75:4021

    Article  CAS  Google Scholar 

  21. Mejri S, Binous H, Mahgoub K, Bellagi A (2018) Comput Appl Eng Educ 26:1405

    Article  Google Scholar 

  22. Koubaissy B, Joly G, Magnoux P (2008) Ind Eng Chem Res 47:9558

    Article  CAS  Google Scholar 

  23. Shen Q, Xu M-H, Wu T, Pan G-X, Tang P-S (2022) Chem Pap 76:123

    Article  CAS  Google Scholar 

  24. Lyklema J (1995) Fundamentals of interface and colloid science: volume II solid−liquid interfaces. Academic Press, London

    Google Scholar 

  25. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khim Hoong Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, K.H., Hashim, M.A., Tran, H.N. et al. S-shaped adsorption isotherms modeled by the Frumkin–Fowler–Guggenheim and Hill–de Boer equations. Monatsh Chem 154, 1127–1135 (2023). https://doi.org/10.1007/s00706-023-03116-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03116-w

Keywords

Navigation